Commit 7a60e044 authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1185 canceled with stages
name: 🐞 Bug
description: 提交错误报告 | File a bug/issue
title: "[BUG] <title>"
labels: []
body:
- type: checkboxes
attributes:
label: 是否已有关于该错误的issue或讨论? | Is there an existing issue / discussion for this?
description: |
请先搜索您遇到的错误是否在已有的issues或讨论中提到过。
Please search to see if an issue / discussion already exists for the bug you encountered.
[Issues](https://github.com/OpenBMB/MiniCPM-V/issues)
[Discussions](https://github.com/OpenBMB/MiniCPM-V/discussions)
options:
- label: 我已经搜索过已有的issues和讨论 | I have searched the existing issues / discussions
required: true
- type: checkboxes
attributes:
label: 该问题是否在FAQ中有解答? | Is there an existing answer for this in FAQ?
description: |
请先搜索您遇到的错误是否已在FAQ中有相关解答。
Please search to see if an answer already exists in FAQ for the bug you encountered.
[FAQ-en](https://github.com/OpenBMB/MiniCPM-V/blob/main/FAQ.md)
[FAQ-zh](https://github.com/OpenBMB/MiniCPM-V/blob/main/FAQ_zh.md)
options:
- label: 我已经搜索过FAQ | I have searched FAQ
required: true
- type: textarea
attributes:
label: 当前行为 | Current Behavior
description: |
准确描述遇到的行为。
A concise description of what you're experiencing.
validations:
required: false
- type: textarea
attributes:
label: 期望行为 | Expected Behavior
description: |
准确描述预期的行为。
A concise description of what you expected to happen.
validations:
required: false
- type: textarea
attributes:
label: 复现方法 | Steps To Reproduce
description: |
复现当前行为的详细步骤。
Steps to reproduce the behavior.
placeholder: |
1. In this environment...
2. With this config...
3. Run '...'
4. See error...
validations:
required: false
- type: textarea
attributes:
label: 运行环境 | Environment
description: |
examples:
- **OS**: Ubuntu 20.04
- **Python**: 3.8
- **Transformers**: 4.31.0
- **PyTorch**: 2.0.1
- **CUDA**: 11.4
value: |
- OS:
- Python:
- Transformers:
- PyTorch:
- CUDA (`python -c 'import torch; print(torch.version.cuda)'`):
render: Markdown
validations:
required: false
- type: textarea
attributes:
label: 备注 | Anything else?
description: |
您可以在这里补充其他关于该问题背景信息的描述、链接或引用等。
您可以通过点击高亮此区域然后拖动文件的方式上传图片或日志文件。
Links? References? Anything that will give us more context about the issue you are encountering!
Tip: You can attach images or log files by clicking this area to highlight it and then dragging files in.
validations:
required: false
blank_issues_enabled: true
name: "💡 Feature Request"
description: 创建新功能请求 | Create a new ticket for a new feature request
title: "💡 [REQUEST] - <title>"
labels: [
"question"
]
body:
- type: input
id: start_date
attributes:
label: "起始日期 | Start Date"
description: |
起始开发日期
Start of development
placeholder: "month/day/year"
validations:
required: false
- type: textarea
id: implementation_pr
attributes:
label: "实现PR | Implementation PR"
description: |
实现该功能的Pull request
Pull request used
placeholder: "#Pull Request ID"
validations:
required: false
- type: textarea
id: reference_issues
attributes:
label: "相关Issues | Reference Issues"
description: |
与该功能相关的issues
Common issues
placeholder: "#Issues IDs"
validations:
required: false
- type: textarea
id: summary
attributes:
label: "摘要 | Summary"
description: |
简要描述新功能的特点
Provide a brief explanation of the feature
placeholder: |
Describe in a few lines your feature request
validations:
required: true
- type: textarea
id: basic_example
attributes:
label: "基本示例 | Basic Example"
description: Indicate here some basic examples of your feature.
placeholder: A few specific words about your feature request.
validations:
required: true
- type: textarea
id: drawbacks
attributes:
label: "缺陷 | Drawbacks"
description: |
该新功能有哪些缺陷/可能造成哪些影响?
What are the drawbacks/impacts of your feature request ?
placeholder: |
Identify the drawbacks and impacts while being neutral on your feature request
validations:
required: true
- type: textarea
id: unresolved_question
attributes:
label: "未解决问题 | Unresolved questions"
description: |
有哪些尚未解决的问题?
What questions still remain unresolved ?
placeholder: |
Identify any unresolved issues.
validations:
required: false
\ No newline at end of file
*.bk
__pycache__
.DS_Store
{
"githubPullRequests.ignoredPullRequestBranches": [
"main"
]
}
\ No newline at end of file
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2024 OpenBMB
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# MiniCPM-V
**MiniCPM-V**是面向图文理解的端侧多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。
## 论文
- [MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies](https://arxiv.org/abs/2404.06395)
## 模型结构
MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量, 总计2.7B参数量。
<div align="center">
<img src="./assets/OIP-C.jpg"/>
</div>
## 算法原理
该模型基于 MiniCPM 2.4B 和 SigLip-400M 构建,共拥有 2.8B 参数。MiniCPM-V 2.0 具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性 OCR 能力评测基准 OCRBench 上达到开源模型最佳水平,甚至在场景文字理解方面实现接近 Gemini Pro 的性能。
<div align=center>
<img src="./assets/transformer.png"/>
</div>
## 环境配置
### Docker(方法一)
[光源](https://www.sourcefind.cn/#/service-details)拉取docker镜像的地址与使用步骤
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu22.04-dtk23.10.1-py310
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=64G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name minicpm-v <your imageID> bash
cd /path/your_code_data/
pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
```
### Dockerfile(方法二)
```
cd /path/your_code_data/docker
docker build --no-cache -t minicpm-v:latest .
docker run --shm-size=64G --name qwen-vl -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v /path/your_code_data/:/path/your_code_data/ -it minicpm-v bash
```
### Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```
DTK驱动:dtk23.10
python:python3.10
torch:2.1
torchvision: 0.16.0
deepspped: 0.12.3
```
`Tips:以上dtk驱动、python、paddle等DCU相关工具版本需要严格一一对应`
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```
conda create -n minicpm-v python=3.10
conda activate minicpm-v
cd /path/your_code_data/
pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple
```
## 数据集
迷你数据集 [self_build](data/self_build/)
本仓库提供自建数据集用于训练代码测试。预训练需要准备你的训练数据,需要将所有样本放到一个列表中并存入json文件中。每个样本对应一个字典,示例如下所示。用于正常训练的完整数据集请按此目录结构进行制备:
```
[
{
"id": "0",
"image": 'path/to/image_0.jpg',
"conversations": [
{
'role': 'user',
'content': '<image>\nHow many desserts are on the white plate?'
},
{
'role': 'assistant',
'content': 'There are three desserts on the white plate.'
},
{
'role': 'user',
'content': 'What type of desserts are they?'
},
{
'role': 'assistant',
'content': 'The desserts are cakes with bananas and pecans on top. They share similarities with donuts, but the presence of bananas and pecans differentiates them.'
},
{
'role': 'user',
'content': 'What is the setting of the image?'},
{
'role': 'assistant',
'content': 'The image is set on a table top with a plate containing the three desserts.'
},
]
},
]
```
## 训练
训练需在[finetune_lora.sh](finetune_lora.sh)中修改以下参数
```
MODEL="openbmb/MiniCPM-Llama3-V-2_5" # or 修改为本地模型地址
DATA="path/to/trainging_data" # 本地自定义训练集json文件
EVAL_DATA="path/to/test_data" # 本地自定义验证集json文件
--output_dir /home/wanglch/projects/saves/MiniCPM-Llama3-V-2_5/lora_train_dtk \
--logging_dir /home/wanglch/projects/saves/MiniCPM-Llama3-V-2_5/lora_train_dtk \
```
### 多卡分布式训练
```
sh finetune_lora.sh
```
## 推理
执行多种任务时需要对以下参数进行修改
model_path = 'openbmb/MiniCPM-Llama3-V-2_5' # 修改为本地模型路径
### 单机单卡
```
sh web_demo_2.5.sh
```
### 单机多卡
```
sh web_demo_2.5_multi.sh
```
## result
### 银行汇票OCR
<div align=center>
<img src="./assets/result_1.png"/>
</div>
### 承兑汇票OCR
<div align=center>
<img src="./assets/result_2.png"/>
</div>
### 发票OCR
<div align=center>
<img src="./assets/result_3.png"/>
</div>
### 精度
测试数据: [self_build](data/self_build/) ,使用的加速卡:A800/K100。
| device | train_loss | eval_loss |
| :------: | :------: | :------: |
| A800 | 0.065 | 0.389 |
| K100 | 0.0635 | 0.391 |
## 应用场景
### 算法类别
`ocr`
### 热点应用行业
`金融,教育,政府,科研,制造,能源,交通`
## 预训练权重
- [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5)
## 源码仓库及问题反馈
- http://developer.hpccube.com/codes/modelzoo/umt5.git
## 参考资料
- [MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies](https://arxiv.org/abs/2404.06395)
- [MiniCPM-V github](https://github.com/OpenBMB/MiniCPM-V?tab=readme-ov-file)
<div align="center">
<img src="./assets/minicpmv.png" width="300em" ></img>
**A GPT-4V Level Multimodal LLM on Your Phone**
<strong>[中文](./README_zh.md) |
English</strong>
Join our <a href="docs/wechat.md" target="_blank"> 💬 WeChat</a>
<p align="center">
MiniCPM-Llama3-V 2.5 <a href="https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/">🤗</a> <a href="https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5">🤖</a> |
MiniCPM-V 2.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-2/">🤗</a> <a href="https://huggingface.co/spaces/openbmb/MiniCPM-V-2">🤖</a> |
<a href="https://openbmb.vercel.app/minicpm-v-2-en"> Technical Blog </a>
</p>
</div>
**MiniCPM-V** is a series of end-side multimodal LLMs (MLLMs) designed for vision-language understanding. The models take image and text as inputs and provide high-quality text outputs. Since February 2024, we have released 4 versions of the model, aiming to achieve **strong performance and efficient deployment**. The most notable models in this series currently include:
- **MiniCPM-Llama3-V 2.5**: 🔥🔥🔥 The latest and most capable model in the MiniCPM-V series. With a total of 8B parameters, the model **surpasses proprietary models such as GPT-4V-1106, Gemini Pro, Qwen-VL-Max and Claude 3** in overall performance. Equipped with the enhanced OCR and instruction-following capability, the model can also support multimodal conversation for **over 30 languages** including English, Chinese, French, Spanish, German etc. With help of quantization, compilation optimizations, and several efficient inference techniques on CPUs and NPUs, MiniCPM-Llama3-V 2.5 can be **efficiently deployed on end-side devices**.
- **MiniCPM-V 2.0**: The lightest model in the MiniCPM-V series. With 2B parameters, it surpasses larger models such as Yi-VL 34B, CogVLM-Chat 17B, and Qwen-VL-Chat 10B in overall performance. It can accept image inputs of any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving comparable performance with Gemini Pro in understanding scene-text and matches GPT-4V in low hallucination rates.
## News <!-- omit in toc -->
#### 📌 Pinned
* [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). We are working hard to merge PRs into official repositories. Please stay tuned!
* [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
* [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](./docs/compare_with_phi-3_vision.md) to view more details.
* [2024.05.23] 🔥🔥🔥 MiniCPM-V tops GitHub Trending and Hugging Face Trending! Our demo, recommended by Hugging Face Gradio’s official account, is available [here](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). Come and try it out!
<br>
* [2024.06.03] Now, you can run MiniCPM-Llama3-V 2.5 on multiple low VRAM GPUs(12 GB or 16 GB) by distributing the model's layers across multiple GPUs. For more details, Check this [link](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md).
* [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)!
* [2024.05.24] We release the MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](./finetune/readme.md). Try it now!
* [2024.04.23] MiniCPM-V-2.0 supports vLLM now! Click [here](#vllm) to view more details.
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
* [2024.04.17] MiniCPM-V-2.0 supports deploying [WebUI Demo](#webui-demo) now!
* [2024.04.15] MiniCPM-V-2.0 now also supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
* [2024.04.12] We open-source MiniCPM-V 2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
* [2024.03.14] MiniCPM-V now supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md) with the SWIFT framework. Thanks to [Jintao](https://github.com/Jintao-Huang) for the contribution!
* [2024.03.01] MiniCPM-V now can be deployed on Mac!
* [2024.02.01] We open-source MiniCPM-V and OmniLMM-12B, which support efficient end-side deployment and powerful multimodal capabilities correspondingly.
## Contents <!-- omit in toc -->
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
- [MiniCPM-V 2.0](#minicpm-v-20)
- [Chat with Our Demo on Gradio](#chat-with-our-demo-on-gradio)
- [Install](#install)
- [Inference](#inference)
- [Model Zoo](#model-zoo)
- [Multi-turn Conversation](#multi-turn-conversation)
- [Inference on Mac](#inference-on-mac)
- [Deployment on Mobile Phone](#deployment-on-mobile-phone)
- [Inference with llama.cpp](#inference-with-llamacpp)
- [Inference with vLLM](#inference-with-vllm)
- [Fine-tuning](#fine-tuning)
- [TODO](#todo)
- [🌟 Star History](#-star-history)
- [Citation](#citation)
## MiniCPM-Llama3-V 2.5
**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:
- 🔥 **Leading Performance.**
MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4V-1106, Gemini Pro, Claude 3 and Qwen-VL-Max** and greatly outperforms other Llama 3-based MLLMs.
- 💪 **Strong OCR Capabilities.**
MiniCPM-Llama3-V 2.5 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving a **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.
- 🏆 **Trustworthy Behavior.**
Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technique in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves a **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community. [Data released](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset).
- 🌏 **Multilingual Support.**
Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
- 🚀 **Efficient Deployment.**
MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on end-side devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150x acceleration in end-side MLLM image encoding** and a **3x speedup in language decoding**.
- 💫 **Easy Usage.**
MiniCPM-Llama3-V 2.5 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) and [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) support for efficient CPU inference on local devices, (2) [GGUF](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) format quantized models in 16 sizes, (3) efficient [LoRA](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning) fine-tuning with only 2 V100 GPUs, (4) [streaming output](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage), (5) quick local WebUI demo setup with [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py) and [Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py), and (6) interactive demos on [HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).
### Evaluation <!-- omit in toc -->
<div align="center">
<img src=assets/MiniCPM-Llama3-V-2.5-peformance.png width=66% />
</div>
<details>
<summary>Click to view results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench. </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>OCRBench</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>Open-Compass</th>
<th>MME</th>
<th>MMB test (en)</th>
<th>MMB test (cn)</th>
<th>MMMU val</th>
<th>Math-Vista</th>
<th>LLaVA Bench</th>
<th>RealWorld QA</th>
<th>Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="14" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro</td>
<td>-</td>
<td>680</td>
<td>74.6</td>
<td>88.1</td>
<td>62.9</td>
<td>2148.9</td>
<td>73.6</td>
<td>74.3</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
<td>-</td>
<td>645</td>
<td>78.0</td>
<td>88.4</td>
<td>63.5</td>
<td>1771.5</td>
<td>77.0</td>
<td>74.4</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>63.0</td>
<td>86.4</td>
</tr>
<tr>
<td colspan="14" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Gemini</td>
<td>2.2B</td>
<td>-</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>1653.0</td>
<td>-</td>
<td>-</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
<td>9.6B</td>
<td>488</td>
<td>61.5</td>
<td>62.6</td>
<td>51.6</td>
<td>1860.0</td>
<td>61.8</td>
<td>56.3</td>
<td>37.0</td>
<td>33.8</td>
<td>67.7</td>
<td>49.3</td>
<td>56.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
<td>7.3B</td>
<td>435</td>
<td>64.7*</td>
<td>47.0*</td>
<td>54.6</td>
<td>1765.4</td>
<td>73.8</td>
<td>71.4</td>
<td>38.3</td>
<td>36.8</td>
<td>77.8</td>
<td>54.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Yi-VL-34B</td>
<td>34B</td>
<td>290</td>
<td>43.4*</td>
<td>16.9*</td>
<td>52.2</td>
<td><strong>2050.2</strong></td>
<td>72.4</td>
<td>70.7</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>54.8</td>
<td>79.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM-Chat</td>
<td>17.4B</td>
<td>590</td>
<td>70.4</td>
<td>33.3*</td>
<td>54.2</td>
<td>1736.6</td>
<td>65.8</td>
<td>55.9</td>
<td>37.3</td>
<td>34.7</td>
<td>73.9</td>
<td>60.3</td>
<td>73.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">TextMonkey</td>
<td>9.7B</td>
<td>558</td>
<td>64.3</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Idefics2</td>
<td>8.0B</td>
<td>-</td>
<td>73.0</td>
<td>74.0</td>
<td>57.2</td>
<td>1847.6</td>
<td>75.7</td>
<td>68.6</td>
<td>45.2</td>
<td>52.2</td>
<td>49.1</td>
<td>60.7</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54.3</td>
<td>1920.3</td>
<td>77.0</td>
<td>73.9</td>
<td>41.3</td>
<td>31.5</td>
<td>61.2</td>
<td>58.8</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>78.2</td>
<td>-</td>
<td>1971.5</td>
<td>-</td>
<td>-</td>
<td>41.7</td>
<td>37.5</td>
<td>80.1</td>
<td>60.0</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Phi-3-vision-128k-instruct</td>
<td>4.2B</td>
<td>639*</td>
<td>70.9</td>
<td>-</td>
<td>-</td>
<td>1537.5*</td>
<td>-</td>
<td>-</td>
<td>40.4</td>
<td>44.5</td>
<td>64.2*</td>
<td>58.8*</td>
<td>-</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
<td>2.8B</td>
<td>366</td>
<td>60.6</td>
<td>38.2</td>
<td>47.5</td>
<td>1650.2</td>
<td>64.1</td>
<td>62.6</td>
<td>38.3</td>
<td>28.9</td>
<td>51.3</td>
<td>51.2</td>
<td>78.4</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
<td>2.8B</td>
<td>605</td>
<td>74.1</td>
<td>71.9</td>
<td>54.5</td>
<td>1808.6</td>
<td>69.1</td>
<td>66.5</td>
<td>38.2</td>
<td>38.7</td>
<td>69.2</td>
<td>55.8</td>
<td>85.5</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
<td>8.5B</td>
<td><strong>725</strong></td>
<td><strong>76.6</strong></td>
<td><strong>84.8</strong></td>
<td><strong>65.1</strong></td>
<td>2024.6</td>
<td><strong>77.2</strong></td>
<td><strong>74.2</strong></td>
<td><strong>45.8</strong></td>
<td><strong>54.3</strong></td>
<td><strong>86.7</strong></td>
<td><strong>63.5</strong></td>
<td><strong>89.7</strong></td>
</tr>
</tbody>
</table>
</div>
* We evaluate the officially released checkpoint by ourselves.
</details>
<div align="center">
<img src="assets/llavabench_compare_3.png" width="100%" />
<br>
Evaluation results of multilingual LLaVA Bench
</div>
### Examples <!-- omit in toc -->
<table align="center" >
<p align="center" >
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" />
</p>
</table>
We deploy MiniCPM-Llama3-V 2.5 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
<table align="center">
<p align="center">
<img src="assets/gif_cases/ticket.gif" width=32%/>
<img src="assets/gif_cases/meal_plan.gif" width=32%/>
</p>
</table>
<table align="center">
<p align="center">
<img src="assets/gif_cases/1-4.gif" width=64%/>
</p>
</table>
## MiniCPM-V 2.0
<details>
<summary>Click to view more details of MiniCPM-V 2.0</summary>
**MiniCPM-V 2.0** is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Our latest version, MiniCPM-V 2.0 has several notable features.
- 🔥 **State-of-the-art Performance.**
MiniCPM-V 2.0 achieves **state-of-the-art performance** on multiple benchmarks (including OCRBench, TextVQA, MME, MMB, MathVista, etc) among models under 7B parameters. It even **outperforms strong Qwen-VL-Chat 9.6B, CogVLM-Chat 17.4B, and Yi-VL 34B on OpenCompass, a comprehensive evaluation over 11 popular benchmarks**. Notably, MiniCPM-V 2.0 shows **strong OCR capability**, achieving **comparable performance to Gemini Pro in scene-text understanding**, and **state-of-the-art performance on OCRBench** among open-source models.
- 🏆 **Trustworthy Behavior.**
LMMs are known for suffering from hallucination, often generating text not factually grounded in images. MiniCPM-V 2.0 is **the first end-side LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] series technique). This allows the model to **match GPT-4V in preventing hallucinations** on Object HalBench.
- 🌟 **High-Resolution Images at Any Aspect Raito.**
MiniCPM-V 2.0 can accept **1.8 million pixels (e.g., 1344x1344) images at any aspect ratio**. This enables better perception of fine-grained visual information such as small objects and optical characters, which is achieved via a recent technique from [LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf).
- ⚡️ **High Efficiency.**
MiniCPM-V 2.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. For visual encoding, we compress the image representations into much fewer tokens via a perceiver resampler. This allows MiniCPM-V 2.0 to operate with **favorable memory cost and speed during inference even when dealing with high-resolution images**.
- 🙌 **Bilingual Support.**
MiniCPM-V 2.0 **supports strong bilingual multimodal capabilities in both English and Chinese**. This is enabled by generalizing multimodal capabilities across languages, a technique from [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24].
### Examples <!-- omit in toc -->
<table align="center">
<p align="center">
<img src="assets/minicpmv2-cases_2.png" width=95%/>
</p>
</table>
We deploy MiniCPM-V 2.0 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
<table align="center">
<p align="center">
<img src="assets/gif_cases/station.gif" width=36%/>
<img src="assets/gif_cases/london_car.gif" width=36%/>
</p>
</table>
</details>
## Legacy Models <!-- omit in toc -->
| Model | Introduction and Guidance |
|:----------------------|:-------------------:|
| MiniCPM-V 1.0 | [Document](./minicpm_v1.md) |
| OmniLMM-12B | [Document](./omnilmm_en.md) |
## Chat with Our Demo on Gradio
We provide online and local demos powered by HuggingFace [Gradio](https://github.com/gradio-app/gradio), the most popular model deployment framework nowadays. It supports streaming outputs, progress bars, queuing, alerts, and other useful features.
### Online Demo <!-- omit in toc -->
Click here to try out the online demo of [MiniCPM-Llama3-V 2.5](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)[MiniCPM-V 2.0](https://huggingface.co/spaces/openbmb/MiniCPM-V-2) on HuggingFace Spaces.
### Local WebUI Demo <!-- omit in toc -->
You can easily build your own local WebUI demo with Gradio using the following commands.
```shell
pip install -r requirements.txt
```
```shell
# For NVIDIA GPUs, run:
python web_demo_2.5.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs), run:
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
```
## Install
1. Clone this repository and navigate to the source folder
```bash
git clone https://github.com/OpenBMB/MiniCPM-V.git
cd MiniCPM-V
```
2. Create conda environment
```Shell
conda create -n MiniCPM-V python=3.10 -y
conda activate MiniCPM-V
```
3. Install dependencies
```shell
pip install -r requirements.txt
```
## Inference
### Model Zoo
| Model | Device | Memory | &emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; Description | Download |
|:-----------|:--:|:-----------:|:-------------------|:---------------:|
| MiniCPM-Llama3-V 2.5 | GPU | 19 GB | The lastest version, achieving state-of-the end-side multimodal performance. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5) |
| MiniCPM-Llama3-V 2.5 gguf | CPU | 5 GB | The gguf version, lower memory usage and faster inference. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) &nbsp;&nbsp;[<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-gguf) |
| MiniCPM-Llama3-V 2.5 int4 | GPU | 8 GB | The int4 quantized version,lower GPU memory usage. | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-int4) |
| MiniCPM-V 2.0 | GPU | 8 GB | Light version, balance the performance the computation cost. | [🤗](https://huggingface.co/openbmb/MiniCPM-V-2) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V-2) |
| MiniCPM-V 1.0 | GPU | 7 GB | Lightest version, achieving the fastest inference. | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V) |
### Multi-turn Conversation
Please refer to the following codes to run.
<div align="center">
<img src="assets/airplane.jpeg" width="500px">
</div>
```python
from chat import MiniCPMVChat, img2base64
import torch
import json
torch.manual_seed(0)
chat_model = MiniCPMVChat('openbmb/MiniCPM-Llama3-V-2_5')
im_64 = img2base64('./assets/airplane.jpeg')
# First round chat
msgs = [{"role": "user", "content": "Tell me the model of this aircraft."}]
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
# Second round chat
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Introduce something about Airbus A380."})
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
```
You will get the following output:
```
"The aircraft in the image is an Airbus A380, which can be identified by its large size, double-deck structure, and the distinctive shape of its wings and engines. The A380 is a wide-body aircraft known for being the world's largest passenger airliner, designed for long-haul flights. It has four engines, which are characteristic of large commercial aircraft. The registration number on the aircraft can also provide specific information about the model if looked up in an aviation database."
"The Airbus A380 is a double-deck, wide-body, four-engine jet airliner made by Airbus. It is the world's largest passenger airliner and is known for its long-haul capabilities. The aircraft was developed to improve efficiency and comfort for passengers traveling over long distances. It has two full-length passenger decks, which can accommodate more passengers than a typical single-aisle airplane. The A380 has been operated by airlines such as Lufthansa, Singapore Airlines, and Emirates, among others. It is widely recognized for its unique design and significant impact on the aviation industry."
```
### Inference on Mac
<details>
<summary>Click to view an example, to run MiniCPM-Llama3-V 2.5 on 💻 Mac with MPS (Apple silicon or AMD GPUs). </summary>
```python
# test.py Need more than 16GB memory.
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, low_cpu_mem_usage=True)
model = model.to(device='mps')
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()
image = Image.open('./assets/hk_OCR.jpg').convert('RGB')
question = 'Where is this photo taken?'
msgs = [{'role': 'user', 'content': question}]
answer, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=True
)
print(answer)
```
Run with command:
```shell
PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
```
</details>
### Deployment on Mobile Phone
MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0 can be deployed on mobile phones with Android operating systems. 🚀 Click [MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM) to install apk.
### Inference with llama.cpp<a id="inference-with-llamacpp"></a>
MiniCPM-Llama3-V 2.5 can run with llama.cpp now! See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv) for more detail. This implementation supports smooth inference of 6~8 token/s on mobile phones (test environment:Xiaomi 14 pro + Snapdragon 8 Gen 3).
### Inference with vLLM<a id="vllm"></a>
<details>
<summary>Click to see how to inference MiniCPM-V 2.0 with vLLM (MiniCPM-Llama3-V 2.5 coming soon) </summary>
Because our pull request to vLLM is still waiting for reviewing, we fork this repository to build and test our vLLM demo. Here are the steps:
1. Clone our version of vLLM:
```shell
git clone https://github.com/OpenBMB/vllm.git
```
2. Install vLLM:
```shell
cd vllm
pip install -e .
```
3. Install timm:
```shell
pip install timm=0.9.10
```
4. Run our demo:
```shell
python examples/minicpmv_example.py
```
</details>
## Fine-tuning
### Simple Fine-tuning <!-- omit in toc -->
We support simple fine-tuning with Hugging Face for MiniCPM-V 2.0 and MiniCPM-Llama3-V 2.5.
[Reference Document](./finetune/readme.md)
### With the SWIFT Framework <!-- omit in toc -->
We now support MiniCPM-V series fine-tuning with the SWIFT framework. SWIFT supports training, inference, evaluation and deployment of nearly 200 LLMs and MLLMs . It supports the lightweight training solutions provided by PEFT and a complete Adapters Library including techniques such as NEFTune, LoRA+ and LLaMA-PRO.
Best Practices:[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
## TODO
- [x] MiniCPM-V fine-tuning support
- [ ] Code release for real-time interactive assistant
## Model License <!-- omit in toc -->
* This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM-V model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
## Statement <!-- omit in toc -->
As LMMs, MiniCPM-V models (including OmniLMM) generate contents by learning a large amount of multimodal corpora, but they cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V models does not represent the views and positions of the model developers
We will not be liable for any problems arising from the use of MiniCPMV-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
## Institutions <!-- omit in toc -->
This project is developed by the following institutions:
- <img src="assets/thunlp.png" width="28px"> [THUNLP](https://nlp.csai.tsinghua.edu.cn/)
- <img src="assets/modelbest.png" width="28px"> [ModelBest](https://modelbest.cn/)
- <img src="assets/zhihu.webp" width="28px"> [Zhihu](https://www.zhihu.com/ )
## Other Multimodal Projects from Our Team <!-- omit in toc -->
👏 Welcome to explore other multimodal projects of our team:
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
## 🌟 Star History
<picture>
<source
media="(prefers-color-scheme: dark)"
srcset="
https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date&theme=dark
"
/>
<source
media="(prefers-color-scheme: light)"
srcset="
https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date
"
/>
<img
alt="Star History Chart"
src="https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date"
/>
</picture>
## Citation
If you find our model/code/paper helpful, please consider cite our papers 📝 and star us ⭐️!
```bib
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{viscpm,
title={Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages},
author={Jinyi Hu and Yuan Yao and Chongyi Wang and Shan Wang and Yinxu Pan and Qianyu Chen and Tianyu Yu and Hanghao Wu and Yue Zhao and Haoye Zhang and Xu Han and Yankai Lin and Jiao Xue and Dahai Li and Zhiyuan Liu and Maosong Sun},
journal={arXiv preprint arXiv:2308.12038},
year={2023}
}
@article{xu2024llava-uhd,
title={{LLaVA-UHD}: an LMM Perceiving Any Aspect Ratio and High-Resolution Images},
author={Xu, Ruyi and Yao, Yuan and Guo, Zonghao and Cui, Junbo and Ni, Zanlin and Ge, Chunjiang and Chua, Tat-Seng and Liu, Zhiyuan and Huang, Gao},
journal={arXiv preprint arXiv:2403.11703},
year={2024}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024}
}
```
<div align="center">
<!-- <!-- <h1 style="color: #33A6B8; font-family: Helvetica"> OmniLMM </h1> -->
<img src="./assets/minicpmv.png" width="300em" ></img>
**端侧可用的 GPT-4V 级多模态大模型**
<strong>中文 |
[English](./README_en.md)</strong>
加入我们的 <a href="docs/wechat.md" target="_blank"> 💬 微信社区</a>
<p align="center">
MiniCPM-Llama3-V 2.5 <a href="https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/">🤗</a> <a href="https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5">🤖</a> |
MiniCPM-V 2.0 <a href="https://huggingface.co/openbmb/MiniCPM-V-2/">🤗</a> <a href="https://huggingface.co/spaces/openbmb/MiniCPM-V-2">🤖</a> |
<a href="https://openbmb.vercel.app/minicpm-v-2">MiniCPM-V 2.0 技术博客</a>
</p>
</div>
**MiniCPM-V**是面向图文理解的端侧多模态大模型系列。该系列模型接受图像和文本输入,并提供高质量的文本输出。自2024年2月以来,我们共发布了4个版本模型,旨在实现**领先的性能和高效的部署**,目前该系列最值得关注的模型包括:
- **MiniCPM-Llama3-V 2.5**:🔥🔥🔥 MiniCPM-V系列的最新、性能最佳模型。总参数量8B,多模态综合性能**超越 GPT-4V-1106、Gemini Pro、Claude 3、Qwen-VL-Max 等商用闭源模型**,OCR 能力及指令跟随能力进一步提升,并**支持超过30种语言**的多模态交互。通过系统使用模型量化、CPU、NPU、编译优化等高效推理技术,MiniCPM-Llama3-V 2.5 可以实现**高效的终端设备部署**
- **MiniCPM-V 2.0**:MiniCPM-V系列的最轻量级模型。总参数量2B,多模态综合性能超越 Yi-VL 34B、CogVLM-Chat 17B、Qwen-VL-Chat 10B 等更大参数规模的模型,可接受 180 万像素的任意长宽比图像输入,实现了和 Gemini Pro 相近的场景文字识别能力以及和 GPT-4V 相匹的低幻觉率。
## 更新日志 <!-- omit in toc -->
#### 📌 置顶
* [2024.05.28] 💥 MiniCPM-Llama3-V 2.5 现在在 llama.cpp 和 ollama 中完全支持其功能!请拉取我们最新的 fork 来使用:[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) & [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)。我们还发布了各种大小的 GGUF 版本,请点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看。我们正在积极推进将这些功能合并到 llama.cpp & ollama 官方仓库,敬请关注!
* [2024.05.28] 💫 我们现在支持 MiniCPM-Llama3-V 2.5 的 LoRA 微调,更多内存使用统计信息可以在[这里](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics)找到。
* [2024.05.23] 🔍 我们添加了Phi-3-vision-128k-instruct 与 MiniCPM-Llama3-V 2.5的全面对比,包括基准测试评估、多语言能力和推理效率 🌟📊🌍🚀。点击[这里](./docs/compare_with_phi-3_vision.md)查看详细信息。
* [2024.05.23] 🔥🔥🔥 MiniCPM-V 在 GitHub Trending 和 Hugging Face Trending 上登顶!MiniCPM-Llama3-V 2.5 Demo 被 Hugging Face 的 Gradio 官方账户推荐,欢迎点击[这里](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)体验!
<br>
* [2024.06.03] 现在,你可以利用多张低显存显卡(12G/16G)进行GPU串行推理。详情请参见该[文档](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md)配置。
* [2024.05.25] MiniCPM-Llama3-V 2.5 [支持流式输出和自定义系统提示词](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)了,欢迎试用!
* [2024.05.24] 我们开源了 MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf),支持 [llama.cpp](#llamacpp-部署) 推理!实现端侧 6-8 tokens/s 的流畅解码,欢迎试用!
* [2024.05.20] 我们开源了 MiniCPM-Llama3-V 2.5,增强了 OCR 能力,支持 30 多种语言,并首次在端侧实现了 GPT-4V 级的多模态能力!我们提供了[高效推理](#手机端部署)[简易微调](./finetune/readme.md)的支持,欢迎试用!
* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm) 的支持,欢迎体验!
* [2024.04.18] 我们在 HuggingFace Space 新增了 MiniCPM-V 2.0 的 [demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2),欢迎体验!
* [2024.04.17] MiniCPM-V 2.0 现在支持用户部署本地 [WebUI Demo](#本地webui-demo部署) 了,欢迎试用!
* [2024.04.15] MiniCPM-V 2.0 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) 了,支持流式输出!
* [2024.04.12] 我们开源了 MiniCPM-V 2.0,该模型刷新了 OCRBench 开源模型最佳成绩,在场景文字识别能力上比肩 Gemini Pro,同时还在综合了 11 个主流多模态大模型评测基准的 <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a> 榜单上超过了 Qwen-VL-Chat 10B、CogVLM-Chat 17B 和 Yi-VL 34B 等更大参数规模的模型!点击<a href="https://openbmb.vercel.app/minicpm-v-2">这里</a>查看 MiniCPM-V 2.0 技术博客。
* [2024.03.14] MiniCPM-V 现在支持 SWIFT 框架下的[微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md)了,感谢 [Jintao](https://github.com/Jintao-Huang) 的贡献!
* [2024.03.01] MiniCPM-V 现在支持在 Mac 电脑上进行部署!
* [2024.02.01] 我们开源了 MiniCPM-V 和 OmniLMM-12B,分别可以支持高效的端侧部署和同规模领先的多模态能力!
## 目录 <!-- omit in toc -->
- [MiniCPM-Llama3-V 2.5](#minicpm-llama3-v-25)
- [MiniCPM-V 2.0](#minicpm-v-20)
- [Demo](#demo)
- [安装](#安装)
- [推理](#推理)
- [模型库](#模型库)
- [多轮对话](#多轮对话)
- [Mac 推理](#mac-推理)
- [手机端部署](#手机端部署)
- [本地WebUI Demo部署](#本地webui-demo部署)
- [llama.cpp 部署](#llamacpp-部署)
- [vLLM 部署 ](#vllm-部署-)
- [微调](#微调)
- [未来计划](#未来计划)
- [🌟 Star History](#-star-history)
- [引用](#引用)
## MiniCPM-Llama3-V 2.5
**MiniCPM-Llama3-V 2.5** 是 MiniCPM-V 系列的最新版本模型,基于 SigLip-400M 和 Llama3-8B-Instruct 构建,共 8B 参数量,相较于 MiniCPM-V 2.0 性能取得较大幅度提升。MiniCPM-Llama3-V 2.5 值得关注的特点包括:
- 🔥 **领先的性能。**
MiniCPM-Llama3-V 2.5 在综合了 11 个主流多模态大模型评测基准的 OpenCompass 榜单上平均得分 65.1,**以 8B 量级的大小超过了 GPT-4V-1106、Gemini Pro、Claude 3、Qwen-VL-Max 等主流商用闭源多模态大模型**,大幅超越基于Llama 3构建的其他多模态大模型。
- 💪 **优秀的 OCR 能力。**
MiniCPM-Llama3-V 2.5 可接受 180 万像素的任意宽高比图像输入,**OCRBench 得分达到 725,超越 GPT-4o、GPT-4V、Gemini Pro、Qwen-VL-Max 等商用闭源模型**,达到最佳水平。基于近期用户反馈建议,MiniCPM-Llama3-V 2.5 增强了全文 OCR 信息提取、表格图像转 markdown 等高频实用能力,并且进一步加强了指令跟随、复杂推理能力,带来更好的多模态交互体感。
- 🏆 **可信行为。**
借助最新的 [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) 对齐技术([RLHF-V](https://github.com/RLHF-V/) [CVPR'24]系列的最新技术),MiniCPM-Llama3-V 2.5 具有更加可信的多模态行为,在 Object HalBench 的幻觉率降低到了 **10.3%**,显著低于 GPT-4V-1106 (13.6%),达到开源社区最佳水平。[数据集已发布](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset)
- 🌏 **多语言支持。**
得益于 Llama 3 强大的多语言能力和 VisCPM 的跨语言泛化技术,MiniCPM-Llama3-V 2.5 在中英双语多模态能力的基础上,仅通过少量翻译的多模态数据的指令微调,高效泛化支持了**德语、法语、西班牙语、意大利语、韩语等 30+ 种语言**的多模态能力,并表现出了良好的多语言多模态对话性能。[查看所有支持语言](./assets/minicpm-llama-v-2-5_languages.md)
- 🚀 **高效部署。**
MiniCPM-Llama3-V 2.5 较为系统地通过**模型量化、CPU、NPU、编译优化**等高效加速技术,实现高效的终端设备部署。对于高通芯片的移动手机,我们首次将 NPU 加速框架 QNN 整合进了 llama.cpp。经过系统优化后,MiniCPM-Llama3-V 2.5 实现了多模态大模型端侧**语言解码速度 3 倍加速****图像编码 150 倍加速**的巨大提升。
- 💫 **易于使用。**
MiniCPM-Llama3-V 2.5 可以通过多种方式轻松使用:(1)[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md)[ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5) 支持在本地设备上进行高效的 CPU 推理;(2)提供 16 种尺寸的 [GGUF](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) 格式量化模型;(3)仅需 2 张 V100 GPU 即可进行高效的 [LoRA](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#lora-finetuning) 微调;( 4)支持[流式输出](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage);(5)快速搭建 [Gradio](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_2.5.py)[Streamlit](https://github.com/OpenBMB/MiniCPM-V/blob/main/web_demo_streamlit-2_5.py) 本地 WebUI demo;( 6.)[HuggingFace Spaces](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5) 交互式 demo。
### 性能评估 <!-- omit in toc -->
<div align="center">
<img src="assets/MiniCPM-Llama3-V-2.5-peformance.png" width="66%" />
</div>
<details>
<summary>TextVQA, DocVQA, OCRBench, OpenCompass MultiModal Avg Score, MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench上的详细评测结果。 </summary>
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th>OCRBench</th>
<th>TextVQA val</th>
<th>DocVQA test</th>
<th>Open-Compass</th>
<th>MME</th>
<th>MMB test (en)</th>
<th>MMB test (cn)</th>
<th>MMMU val</th>
<th>Math-Vista</th>
<th>LLaVA Bench</th>
<th>RealWorld QA</th>
<th>Object HalBench</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td colspan="14" align="left"><strong>Proprietary</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Gemini Pro</td>
<td>-</td>
<td>680</td>
<td>74.6</td>
<td>88.1</td>
<td>62.9</td>
<td>2148.9</td>
<td>73.6</td>
<td>74.3</td>
<td>48.9</td>
<td>45.8</td>
<td>79.9</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
<td>-</td>
<td>645</td>
<td>78.0</td>
<td>88.4</td>
<td>63.5</td>
<td>1771.5</td>
<td>77.0</td>
<td>74.4</td>
<td>53.8</td>
<td>47.8</td>
<td>93.1</td>
<td>63.0</td>
<td>86.4</td>
</tr>
<tr>
<td colspan="14" align="left"><strong>Open-source</strong></td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mini-Gemini</td>
<td>2.2B</td>
<td>-</td>
<td>56.2</td>
<td>34.2*</td>
<td>-</td>
<td>1653.0</td>
<td>-</td>
<td>-</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
<td>9.6B</td>
<td>488</td>
<td>61.5</td>
<td>62.6</td>
<td>51.6</td>
<td>1860.0</td>
<td>61.8</td>
<td>56.3</td>
<td>37.0</td>
<td>33.8</td>
<td>67.7</td>
<td>49.3</td>
<td>56.2</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
<td>7.3B</td>
<td>435</td>
<td>64.7*</td>
<td>47.0*</td>
<td>54.6</td>
<td>1765.4</td>
<td>73.8</td>
<td>71.4</td>
<td>38.3</td>
<td>36.8</td>
<td>77.8</td>
<td>54.2</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Yi-VL-34B</td>
<td>34B</td>
<td>290</td>
<td>43.4*</td>
<td>16.9*</td>
<td>52.2</td>
<td><strong>2050.2</strong></td>
<td>72.4</td>
<td>70.7</td>
<td>45.1</td>
<td>30.7</td>
<td>62.3</td>
<td>54.8</td>
<td>79.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">CogVLM-Chat</td>
<td>17.4B</td>
<td>590</td>
<td>70.4</td>
<td>33.3*</td>
<td>54.2</td>
<td>1736.6</td>
<td>65.8</td>
<td>55.9</td>
<td>37.3</td>
<td>34.7</td>
<td>73.9</td>
<td>60.3</td>
<td>73.6</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">TextMonkey</td>
<td>9.7B</td>
<td>558</td>
<td>64.3</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Idefics2</td>
<td>8.0B</td>
<td>-</td>
<td>73.0</td>
<td>74.0</td>
<td>57.2</td>
<td>1847.6</td>
<td>75.7</td>
<td>68.6</td>
<td>45.2</td>
<td>52.2</td>
<td>49.1</td>
<td>60.7</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54.3</td>
<td>1920.3</td>
<td>77.0</td>
<td>73.9</td>
<td>41.3</td>
<td>31.5</td>
<td>61.2</td>
<td>58.8</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
<td>8.4B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1971.5</td>
<td>-</td>
<td>-</td>
<td>41.7</td>
<td>-</td>
<td>80.1</td>
<td>60.0</td>
<td>-</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Phi-3-vision-128k-instruct</td>
<td>4.2B</td>
<td>639*</td>
<td>70.9</td>
<td>-</td>
<td>-</td>
<td>1537.5*</td>
<td>-</td>
<td>-</td>
<td>40.4</td>
<td>44.5</td>
<td>64.2*</td>
<td>58.8*</td>
<td>-</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
<td>2.8B</td>
<td>366</td>
<td>60.6</td>
<td>38.2</td>
<td>47.5</td>
<td>1650.2</td>
<td>64.1</td>
<td>62.6</td>
<td>38.3</td>
<td>28.9</td>
<td>51.3</td>
<td>51.2</td>
<td>78.4</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
<td>2.8B</td>
<td>605</td>
<td>74.1</td>
<td>71.9</td>
<td>54.5</td>
<td>1808.6</td>
<td>69.1</td>
<td>66.5</td>
<td>38.2</td>
<td>38.7</td>
<td>69.2</td>
<td>55.8</td>
<td>85.5</td>
</tr>
<tr style="background-color: #e6f2ff;">
<td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
<td>8.5B</td>
<td><strong>725</strong></td>
<td><strong>76.6</strong></td>
<td><strong>84.8</strong></td>
<td><strong>65.1</strong></td>
<td>2024.6</td>
<td><strong>77.2</strong></td>
<td><strong>74.2</strong></td>
<td><strong>45.8</strong></td>
<td><strong>54.3</strong></td>
<td><strong>86.7</strong></td>
<td><strong>63.5</strong></td>
<td><strong>89.7</strong></td>
</tr>
</tbody>
</table>
</div>
* 正式开源模型权重的评测结果。
</details>
<div align="center">
<img src="assets/llavabench_compare_3.png" width="80%" />
<br>
多语言LLaVA Bench评测结果
</div>
### 典型示例 <!-- omit in toc -->
<table align="center">
<p align="center">
<img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
</p>
</table>
我们将 MiniCPM-Llama3-V 2.5 部署在小米 14 Pro 上,并录制了以下演示视频。
<table align="center">
<p align="center">
<img src="assets/gif_cases/ticket.gif" width=32%/>
<img src="assets/gif_cases/meal_plan.gif" width=32%/>
</p>
</table>
<table align="center">
<p align="center" width=80%>
<img src="assets/gif_cases/1-4.gif" width=72%/>
</p>
</table>
## MiniCPM-V 2.0
<details>
<summary>查看 MiniCPM-V 2.0 的详细信息</summary>
**MiniCPM-V 2.0**可以高效部署到终端设备。该模型基于 SigLip-400M 和 [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/)构建,通过perceiver resampler连接。其特点包括:
- 🔥 **优秀的性能。**
MiniCPM-V 2.0 在多个测试基准(如 OCRBench, TextVQA, MME, MMB, MathVista 等)中实现了 7B 以下模型的**最佳性能****在综合了 11 个主流多模态大模型评测基准的 OpenCompass 榜单上超过了 Qwen-VL-Chat 9.6B、CogVLM-Chat 17.4B 和 Yi-VL 34B 等更大参数规模的模型**。MiniCPM-V 2.0 还展现出**领先的 OCR 能力**,在场景文字识别能力上**接近 Gemini Pro**,OCRBench 得分达到**开源模型第一**
- 🏆 **可信行为。**
多模态大模型深受幻觉问题困扰,模型经常生成和图像中的事实不符的文本。MiniCPM-V 2.0 是 **第一个通过多模态 RLHF 对齐的端侧多模态大模型**(借助 [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] 系列技术)。该模型在 [Object HalBench](https://arxiv.org/abs/2312.00849) 达到**和 GPT-4V 相仿**的性能。
- 🌟 **高清图像高效编码。**
MiniCPM-V 2.0 可以接受 **180 万像素的任意长宽比图像输入**(基于最新的[LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf) 技术),这使得模型可以感知到小物体、密集文字等更加细粒度的视觉信息。
- ⚡️ **高效部署。**
MiniCPM-V 2.0 可以**高效部署在大多数消费级显卡和个人电脑上**,包括**移动手机等终端设备**。在视觉编码方面,我们通过perceiver resampler将图像表示压缩为更少的 token。这使得 MiniCPM-V 2.0 即便是**面对高分辨率图像,也能占用较低的存储并展现优秀的推理速度**
- 🙌 **双语支持。**
MiniCPM-V 2.0 **提供领先的中英双语多模态能力支持**
该能力通过 [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24] 论文中提出的多模态能力的跨语言泛化技术实现。
### 典型示例 <!-- omit in toc -->
<table align="center">
<p align="center">
<img src="assets/minicpmv2-cases_2.png" width=95%/>
</p>
</table>
我们将 MiniCPM-V 2.0 部署在小米 14 Pro 上,并录制了以下演示视频,未经任何视频剪辑。
<table align="center">
<p align="center">
<img src="assets/gif_cases/station.gif" width=36%/>
<img src="assets/gif_cases/london_car.gif" width=36%/>
</p>
</table>
</details>
<a id='legacy-models'></a>
## 历史版本模型 <!-- omit in toc -->
| 模型 | 介绍信息和使用教程 |
|:----------------------|:-------------------:|
| MiniCPM-V 1.0 | [文档](./minicpm_v1.md) |
| OmniLMM-12B | [文档](./omnilmm.md) |
## Demo
我们提供由 Hugging Face [Gradio](https://github.com/gradio-app/gradio) 支持的在线和本地 Demo。Gradio 是目前最流行的模型部署框架,支持流式输出、进度条、process bars 和其他常用功能。
### Online Demo <!-- omit in toc -->
欢迎试用 Hugging Face Spaces 上的 [MiniCPM-Llama3-V 2.5](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)[MiniCPM-V 2.0](https://huggingface.co/spaces/openbmb/MiniCPM-V-2) Online Demo。
### 本地 WebUI Demo <!-- omit in toc -->
您可以使用以下命令轻松构建自己的本地 WebUI Demo。
```shell
pip install -r requirements.txt
```
```shell
# 对于 NVIDIA GPU,请运行:
python web_demo_2.5.py --device cuda
# 对于搭载 MPS 的 Mac(Apple 芯片或 AMD GPU),请运行:
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
```
## 安装
1. 克隆我们的仓库并跳转到相应目录
```bash
git clone https://github.com/OpenBMB/MiniCPM-V.git
cd MiniCPM-V
```
1. 创建 conda 环境
```Shell
conda create -n MiniCPMV python=3.10 -y
conda activate MiniCPMV
```
3. 安装依赖
```shell
pip install -r requirements.txt
```
## 推理
### 模型库
| 模型 | 设备 | 资源 | &emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; 简介 | 下载链接 |
|:--------------|:-:|:----------:|:-------------------|:---------------:|
| MiniCPM-Llama3-V 2.5| GPU | 19 GB | 最新版本,提供最佳的端侧多模态理解能力。 | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5) |
| MiniCPM-Llama3-V 2.5 gguf| CPU | 5 GB | gguf 版本,更低的内存占用和更高的推理效率。 | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-gguf) |
| MiniCPM-Llama3-V 2.5 int4 | GPU | 8 GB | int4量化版,更低显存占用。 | [🤗](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4/) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-Llama3-V-2_5-int4) |
| MiniCPM-V 2.0 | GPU | 8 GB | 轻量级版本,平衡计算开销和多模态理解能力。 | [🤗](https://huggingface.co/openbmb/MiniCPM-V-2) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V-2) |
| MiniCPM-V 1.0 | GPU | 7 GB | 最轻量版本, 提供最快的推理速度。 | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V) |
更多[历史版本模型](#legacy-models)
### 多轮对话
请参考以下代码进行推理。
<div align="center">
<img src="assets/airplane.jpeg" width="500px">
</div>
```python
from chat import MiniCPMVChat, img2base64
import torch
import json
torch.manual_seed(0)
chat_model = MiniCPMVChat('openbmb/MiniCPM-Llama3-V-2_5')
im_64 = img2base64('./assets/airplane.jpeg')
# First round chat
msgs = [{"role": "user", "content": "Tell me the model of this aircraft."}]
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
# Second round chat
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Introduce something about Airbus A380."})
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
```
可以得到以下输出:
```
"The aircraft in the image is an Airbus A380, which can be identified by its large size, double-deck structure, and the distinctive shape of its wings and engines. The A380 is a wide-body aircraft known for being the world's largest passenger airliner, designed for long-haul flights. It has four engines, which are characteristic of large commercial aircraft. The registration number on the aircraft can also provide specific information about the model if looked up in an aviation database."
"The Airbus A380 is a double-deck, wide-body, four-engine jet airliner made by Airbus. It is the world's largest passenger airliner and is known for its long-haul capabilities. The aircraft was developed to improve efficiency and comfort for passengers traveling over long distances. It has two full-length passenger decks, which can accommodate more passengers than a typical single-aisle airplane. The A380 has been operated by airlines such as Lufthansa, Singapore Airlines, and Emirates, among others. It is widely recognized for its unique design and significant impact on the aviation industry."
```
### Mac 推理
<details>
<summary>点击查看 MiniCPM-Llama3-V 2.5 / MiniCPM-V 2.0 基于Mac MPS运行 (Apple silicon 或 AMD GPUs)的示例。 </summary>
```python
# test.py Need more than 16GB memory to run.
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, low_cpu_mem_usage=True)
model = model.to(device='mps')
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()
image = Image.open('./assets/hk_OCR.jpg').convert('RGB')
question = 'Where is this photo taken?'
msgs = [{'role': 'user', 'content': question}]
answer, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=True
)
print(answer)
```
运行:
```shell
PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
```
</details>
### 手机端部署
MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.0 可运行在Android手机上,点击[MiniCPM-Llama3-V 2.5](http://minicpm.modelbest.cn/android/modelbest-release-20240528_182155.apk) / [MiniCPM-V 2.0](https://github.com/OpenBMB/mlc-MiniCPM)安装apk使用;
### 本地WebUI Demo部署
<details>
<summary>点击查看本地WebUI demo 在 NVIDIA GPU、Mac等不同设备部署方法 </summary>
```shell
pip install -r requirements.txt
```
```shell
# For NVIDIA GPUs, run:
python web_demo_2.5.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs), run:
PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
```
</details>
### llama.cpp 部署<a id="llamacpp-部署"></a>
MiniCPM-Llama3-V 2.5 现在支持llama.cpp啦! 用法请参考我们的fork [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv), 在手机上可以支持 6~8 token/s 的流畅推理(测试环境:Xiaomi 14 pro + Snapdragon 8 Gen 3)。
### vLLM 部署 <a id='vllm'></a>
<details>
<summary>点击查看 MiniCPM-V 2.0 利用vLLM 部署运行的方法(MiniCPM-Llama3-V 2.5 支持vLLM将在近期推出)</summary>
由于我们对 vLLM 提交的 PR 还在 review 中,因此目前我们 fork 了一个 vLLM 仓库以供测试使用。
1. 首先克隆我们 fork 的 vLLM 库:
```shell
git clone https://github.com/OpenBMB/vllm.git
```
2. 安装 vLLM 库:
```shell
cd vllm
pip install -e .
```
3. 安装 timm 库:
```shell
pip install timm=0.9.10
```
4. 测试运行示例程序:
```shell
python examples/minicpmv_example.py
```
</details>
## 微调
### 简易微调 <!-- omit in toc -->
我们支持使用 Huggingface Transformers 库简易地微调 MiniCPM-V 2.0 和 MiniCPM-Llama3-V 2.5 模型。
[参考文档](./finetune/readme.md)
### 使用 SWIFT 框架 <!-- omit in toc -->
我们支持使用 SWIFT 框架微调 MiniCPM-V 系列模型。SWIFT 支持近 200 种大语言模型和多模态大模型的训练、推理、评测和部署。支持 PEFT 提供的轻量训练方案和完整的 Adapters 库支持的最新训练技术如 NEFTune、LoRA+、LLaMA-PRO 等。
参考文档:[MiniCPM-V 1.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md)[MiniCPM-V 2.0](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
## 未来计划
- [x] 支持 MiniCPM-V 系列模型微调
- [ ] 实时多模态交互代码开源
## 模型协议 <!-- omit in toc -->
* 本仓库中代码依照 [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) 协议开源
* MiniCPM-V 模型权重的使用则需要遵循 [“MiniCPM模型商用许可协议.md”](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%E6%A8%A1%E5%9E%8B%E5%95%86%E7%94%A8%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.md)
* MiniCPM 模型权重对学术研究完全开放,在填写[“问卷”](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)进行登记后亦允许免费商业使用。
## 声明 <!-- omit in toc -->
作为多模态大模型,MiniCPM-V 系列模型(包括 OmniLMM)通过学习大量的多模态数据来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。
因此用户在使用本项目的系列模型生成的内容时,应自行负责对其进行评估和验证。如果由于使用本项目的系列开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
## 机构 <!-- omit in toc -->
本项目由以下机构共同开发:
- <img src="assets/thunlp.png" width="28px"> [清华大学自然语言处理实验室](https://nlp.csai.tsinghua.edu.cn/)
- <img src="assets/modelbest.png" width="28px"> [面壁智能](https://modelbest.cn/)
- <img src="assets/zhihu.webp" width="28px"> [知乎](https://www.zhihu.com/ )
## 其他多模态项目 <!-- omit in toc -->
👏 欢迎了解我们更多的多模态项目:
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
## 🌟 Star History
<picture>
<source
media="(prefers-color-scheme: dark)"
srcset="
https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date&theme=dark
"
/>
<source
media="(prefers-color-scheme: light)"
srcset="
https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date
"
/>
<img
alt="Star History Chart"
src="https://api.star-history.com/svg?repos=OpenBMB/MiniCPM-V&type=Date"
/>
</picture>
## 引用
如果您觉得我们模型/代码/论文有帮助,请给我们 ⭐ 和 引用 📝,感谢!
```bib
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{viscpm,
title={Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages},
author={Jinyi Hu and Yuan Yao and Chongyi Wang and Shan Wang and Yinxu Pan and Qianyu Chen and Tianyu Yu and Hanghao Wu and Yue Zhao and Haoye Zhang and Xu Han and Yankai Lin and Jiao Xue and Dahai Li and Zhiyuan Liu and Maosong Sun},
journal={arXiv preprint arXiv:2308.12038},
year={2023}
}
@article{xu2024llava-uhd,
title={{LLaVA-UHD}: an LMM Perceiving Any Aspect Ratio and High-Resolution Images},
author={Xu, Ruyi and Yao, Yuan and Guo, Zonghao and Cui, Junbo and Ni, Zanlin and Ge, Chunjiang and Chua, Tat-Seng and Liu, Zhiyuan and Huang, Gao},
journal={arXiv preprint arXiv:2403.11703},
year={2024}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024}
}
```
- English
- 中文
- 한국어
- 日本語
- Deutsch
- Français
- Português
- Español
- မြန်မာဘာသာ
- ไทย
- Tiếng Việt
- Türkçe
- ܣܘܪܝܝܐ
- العربية
- हिन्दी
- বাংলা
- नेपाली
- Türkmençe
- Тоҷикӣ
- Кыргызча
- Русский
- Українська
- Беларуская
- ქართული
- Azərbaycanca
- Հայերեն
- Polski
- Lietuvių
- Eesti
- Latviešu
- Čeština
- Slovenčina
- Magyar
- Slovenščina
- Hrvatski
- Bosanski
- Crnogorski
- Српски
- Shqip
- Română
- Български
- Македонски
## 支持语言
英语
中文
韩语
日语
德语
法语
葡萄牙语
西班牙语
缅甸语
泰语
越南语
土耳其语
叙利亚语
阿拉伯语
印地语
孟加拉语
尼泊尔语
土库曼语
塔吉克语
吉尔吉斯语
俄语
乌克兰语
白俄罗斯语
格鲁吉亚语
阿塞拜疆语
亚美尼亚语
波兰语
立陶宛语
爱沙尼亚语
拉脱维亚语
捷克语
斯洛伐克语
匈牙利语
斯洛文尼亚语
克罗地亚语
波斯尼亚语
黑山语
塞尔维亚语
阿尔巴尼亚语
罗马尼亚语
保加利亚
马其顿语
## Supported Languages
English
Chinese
Korean
Japanese
German
French
Portuguese
Spanish
Burmese
Thai
Vietnamese
Turkish
Syriac
Arabic
Hindi
Bengali
Nepali
Turkmen
Tajik
Kyrgyz
Russian
Ukrainian
Belarusian
Georgian
Azerbaijani
Armenian
Polish
Lithuanian
Estonian
Latvian
Czech
Slovak
Hungarian
Slovenian
Croatian
Bosnian
Montenegrin
Serbian
Albanian
Romanian
Bulgarian
Macedonian
\ No newline at end of file
import os
import torch
import json
from PIL import Image
import base64
import io
from accelerate import load_checkpoint_and_dispatch, init_empty_weights
from transformers import AutoTokenizer, AutoModel
from omnilmm.utils import disable_torch_init
from omnilmm.model.omnilmm import OmniLMMForCausalLM
from omnilmm.model.utils import build_transform
from omnilmm.train.train_utils import omni_preprocess
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def init_omni_lmm(model_path):
torch.backends.cuda.matmul.allow_tf32 = True
disable_torch_init()
model_name = os.path.expanduser(model_path)
print(f'Load omni_lmm model and tokenizer from {model_name}')
tokenizer = AutoTokenizer.from_pretrained(
model_name, model_max_length=2048)
if False:
# model on multiple devices for small size gpu memory (Nvidia 3090 24G x2)
with init_empty_weights():
model = OmniLMMForCausalLM.from_pretrained(model_name, tune_clip=True, torch_dtype=torch.bfloat16)
model = load_checkpoint_and_dispatch(model, model_name, dtype=torch.bfloat16,
device_map="auto", no_split_module_classes=['Eva','MistralDecoderLayer', 'ModuleList', 'Resampler']
)
else:
model = OmniLMMForCausalLM.from_pretrained(
model_name, tune_clip=True, torch_dtype=torch.bfloat16
).to(device='cuda', dtype=torch.bfloat16)
image_processor = build_transform(
is_train=False, input_size=model.model.config.image_size, std_mode='OPENAI_CLIP')
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
assert mm_use_im_start_end
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_config = model.model.vision_config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids(
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = model.model.config.num_query
return model, image_processor, image_token_len, tokenizer
def expand_question_into_multimodal(question_text, image_token_len, im_st_token, im_ed_token, im_patch_token):
if '<image>' in question_text[0]['content']:
question_text[0]['content'] = question_text[0]['content'].replace(
'<image>', im_st_token + im_patch_token * image_token_len + im_ed_token)
else:
question_text[0]['content'] = im_st_token + im_patch_token * \
image_token_len + im_ed_token + '\n' + question_text[0]['content']
return question_text
def wrap_question_for_omni_lmm(question, image_token_len, tokenizer):
question = expand_question_into_multimodal(
question, image_token_len, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN)
conversation = question
data_dict = omni_preprocess(sources=[conversation],
tokenizer=tokenizer,
generation=True)
data_dict = dict(input_ids=data_dict["input_ids"][0],
labels=data_dict["labels"][0])
return data_dict
class OmniLMM12B:
def __init__(self, model_path) -> None:
model, img_processor, image_token_len, tokenizer = init_omni_lmm(model_path)
self.model = model
self.image_token_len = image_token_len
self.image_transform = img_processor
self.tokenizer = tokenizer
self.model.eval()
def decode(self, image, input_ids):
with torch.inference_mode():
output = self.model.generate_vllm(
input_ids=input_ids.unsqueeze(0).cuda(),
images=image.unsqueeze(0).half().cuda(),
temperature=0.6,
max_new_tokens=1024,
# num_beams=num_beams,
do_sample=True,
output_scores=True,
return_dict_in_generate=True,
repetition_penalty=1.1,
top_k=30,
top_p=0.9,
)
response = self.tokenizer.decode(
output.sequences[0], skip_special_tokens=True)
response = response.strip()
return response
def chat(self, input):
try:
image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
except Exception as e:
return "Image decode error"
msgs = json.loads(input['question'])
input_ids = wrap_question_for_omni_lmm(
msgs, self.image_token_len, self.tokenizer)['input_ids']
input_ids = torch.as_tensor(input_ids)
#print('input_ids', input_ids)
image = self.image_transform(image)
out = self.decode(image, input_ids)
return out
def img2base64(file_name):
with open(file_name, 'rb') as f:
encoded_string = base64.b64encode(f.read())
return encoded_string
class MiniCPMV:
def __init__(self, model_path) -> None:
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.bfloat16)
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model.eval().cuda()
def chat(self, input):
try:
image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
except Exception as e:
return "Image decode error"
msgs = json.loads(input['question'])
answer, context, _ = self.model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=self.tokenizer,
sampling=True,
temperature=0.7
)
return answer
class MiniCPMV2_5:
def __init__(self, model_path) -> None:
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16)
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
self.model.eval().cuda()
def chat(self, input):
try:
image = Image.open(io.BytesIO(base64.b64decode(input['image']))).convert('RGB')
except Exception as e:
return "Image decode error"
msgs = json.loads(input['question'])
answer = self.model.chat(
image=image,
msgs=msgs,
tokenizer=self.tokenizer,
sampling=True,
temperature=0.7
)
return answer
class MiniCPMVChat:
def __init__(self, model_path) -> None:
if '12B' in model_path:
self.model = OmniLMM12B(model_path)
elif 'MiniCPM-Llama3-V' in model_path:
self.model = MiniCPMV2_5(model_path)
else:
self.model = MiniCPMV(model_path)
def chat(self, input):
return self.model.chat(input)
if __name__ == '__main__':
model_path = 'openbmb/OmniLMM-12B'
chat_model = MiniCPMVChat(model_path)
im_64 = img2base64('./assets/worldmap_ck.jpg')
# first round chat
msgs = [{"role": "user", "content": "What is interesting about this image?"}]
input = {"image": im_64, "question": json.dumps(msgs, ensure_ascii=True)}
answer = chat_model.chat(input)
print(msgs[-1]["content"]+'\n', answer)
# second round chat
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Where is China in the image"})
input = {"image": im_64,"question": json.dumps(msgs, ensure_ascii=True)}
answer = chat_model.chat(input)
print(msgs[-1]["content"]+'\n', answer)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment