import argparse import asyncio import os import pickle from pathlib import Path from typing import List import openai import torch from bert_score import BERTScorer from datasets import load_dataset from tqdm import tqdm def get_client(api_url: str) -> openai.AsyncOpenAI: if os.getenv("OPENAI_API_KEY") is None: os.environ["OPENAI_API_KEY"] = "EMPTY" return openai.AsyncOpenAI(base_url=api_url) def get_dataset(): return load_dataset("bigai-nlco/LooGLE", "longdep_qa", split="test") async def fetch_response( client: openai.AsyncOpenAI, context: str, question: str, semaphore: asyncio.Semaphore, index: int, model: str, output_dir: Path, ): output_file = output_dir / f"response_{index}.pkl" if output_file.exists(): return prompt = ( "Please answer the question based on the long texts below.\n" f"{context}\n" f"Question: {question}\n" "Answer:" ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ] async with semaphore: try: response = await client.chat.completions.create( model=model, messages=messages, temperature=0.0, max_tokens=512, ) except openai.BadRequestError as e: with open(output_file, "wb") as f: pickle.dump({"error": str(e)}, f) return with open(output_file, "wb") as f: pickle.dump(response, f) async def benchmark(args): dataset = get_dataset() output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) client = get_client(args.api_url) semaphore = asyncio.Semaphore(args.max_concurrency) tasks: List[asyncio.Task] = [] for idx, ex in enumerate(dataset): tasks.append( asyncio.create_task( fetch_response( client, ex["context"], ex["question"], semaphore, idx, args.model, output_dir, ) ) ) for _ in tqdm( asyncio.as_completed(tasks), total=len(tasks), desc="Running benchmark" ): await _ def analyse(args): dataset = get_dataset() output_dir = Path(args.output_dir) device = "cuda" if torch.cuda.is_available() else "cpu" scorer = BERTScorer(lang="en", device=device) hyps: List[str] = [] refs: List[str] = [] for idx, ex in enumerate(tqdm(dataset, desc="Loading responses")): pkl_file = output_dir / f"response_{idx}.pkl" if not pkl_file.exists(): raise FileNotFoundError(pkl_file) response = pickle.load(open(pkl_file, "rb")) if isinstance(response, dict) and "error" in response: continue hyps.append(response.choices[0].message.content.strip()) refs.append(ex["answer"]) if not hyps: print("No valid responses to score!") return batch_size = 64 all_f1: List[float] = [] for i in tqdm(range(0, len(hyps), batch_size), desc="Scoring batches"): h_batch = hyps[i : i + batch_size] r_batch = refs[i : i + batch_size] _, _, f1_scores = scorer.score(h_batch, r_batch, verbose=False) all_f1.extend([float(x) for x in f1_scores]) avg = sum(all_f1) / len(all_f1) print(f"Average BERTScore (F1): {avg:.2%}") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Run benchmark and evaluation in one go." ) parser.add_argument( "--api-url", default="http://127.0.0.1:30000/v1", help="OpenAI‑compatible API base URL", ) parser.add_argument( "--model", default="meta-llama/Llama-4-Maverick-17B-128E-Instruct", help="Model name or ID, only used for model name", ) parser.add_argument( "--max-concurrency", type=int, default=144, help="Maximum concurrent requests" ) parser.add_argument( "--output-dir", default="tmp-output-dir", help="Directory for cached responses" ) args = parser.parse_args() asyncio.run(benchmark(args)) analyse(args)