"docs/doxygen/Doxyfile" did not exist on "19490ac4f71735495bcdd080a2531d679c3573e9"
Commit 5efcc6ff authored by mashun1's avatar mashun1
Browse files

metaportrait

parents
Pipeline #584 canceled with stages
name: EDVR_L_REDS_deblurcomp_official
model_type: EDVRModel
scale: 1
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_blur_comp
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: replicate
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: true
with_predeblur: true
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_deblurcomp_REDS_official-0e988e5c.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_REDS_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_sharp_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_REDS_official-9f5f5039.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_Vimeo90K_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vid4
type: VideoTestDataset
dataroot_gt: datasets/Vid4/GT
dataroot_lq: datasets/Vid4/BIx4
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 7
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_Vimeo90K_official-162b54e4.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_Vimeo90K_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 8 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vimeo90K-Test
type: VideoTestVimeo90KDataset
dataroot_gt: datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq: datasets/vimeo90k/vimeo_septuplet_matlabLRx4/sequences
meta_info_file: basicsr/data/meta_info/meta_info_Vimeo90K_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 7
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_Vimeo90K_official-162b54e4.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_REDS_SRblur_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_blur_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: replicate
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: true
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SRblur_REDS_official-983d7b8e.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_M_x4_SR_REDS_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_sharp_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 10
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_M_x4_SR_REDS_official-32075921.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: ESRGAN_SRx4_DF2KOST_official
model_type: ESRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: ESRGAN_SRx4_DF2KOST_official
model_type: ESRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: SingleImageDataset
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: SingleImageDataset
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
name: ESRGAN_PSNR_SRx4_DF2K_official
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_PSNR_SRx4_DF2K_official-150ff491.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: HiFaceGAN_SR4x_test
model_type: HiFaceGANModel
scale: 1 # HiFaceGAN does not resize lq input
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_gt: # the 2nd test dataset
name: FFHQ_sr4x_val
type: PairedImageDataset
dataroot_gt: datasets/FFHQ_512_gt_val
dataroot_lq: datasets/FFHQ_512_lq_val_sr4x
io_backend:
type: disk
# network structures
network_g:
type: HiFaceGAN
num_in_ch: 3
num_feat: 48
use_vae: false
z_dim: 256 # dummy var
crop_size: 512
#norm_g: 'spectralspadesyncbatch3x3'
#norm_g: 'spectralspadeinstance3x3'
norm_g: 'spectralspadebatch3x3' # 20210519: Use batchnorm for now.
is_train: false # HifaceGAN supports progressive training
# so network architecture depends on it
# path
path:
pretrain_network_g: experiments/HiFaceGAN_SR4x_train_full/models/net_g_latest.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
# More metrics will be supported in the next update
#
# msssim:
# type: calculate_msssim
# crop_border: 4
# test_y_channel: false
# lpips:
# type: calculate_lpips
# crop_border: 4
# test_y_channel: false
# niqe:
# type: calculate_niqe
# crop_border: 4
# num_thread: 8
# fid:
# type: calculate_fid
# crop_border: 0
# test_y_channel: false
# use_bgr_order: true
# face_embedding_distance:
# type: calculate_fed
# crop_border: 0
# test_y_channel: false
# face_landmark_distance:
# type: calculate_lle
# crop_border: 0
# test_y_channel: false
name: HiFaceGAN_generic_test
model_type: HiFaceGANModel
scale: 1 # HiFaceGAN does not resize lq input
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_wild: # the 1st test dataset
name: FFHQ_in_the_wild
type: SingleImageDataset
dataroot_lq: datasets/real-world-lq
io_backend:
type: disk
# network structures
network_g:
type: HiFaceGAN # or SPADEGenerator
num_in_ch: 3
num_feat: 48
use_vae: false
z_dim: 256 # dummy var
crop_size: 512
#norm_g: 'spectralspadesyncbatch3x3'
norm_g: 'spectralspadebatch3x3' # 20210519: Use instance norm for now.
is_train: false # HifaceGAN supports progressive training
# so network architecture depends on it
# path
path:
pretrain_network_g: experiments/pretrained_models/generic/latest_net_G.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: generic # add suffix to saved images, if None, use exp name
# No metrics
name: RCAN_BIX4-official
suffix: ~ # add suffix to saved images
model_type: SRModel
scale: 4
crop_border: ~ # crop border when evaluation. If None, crop the scale pixels
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: val_set5
type: PairedImageDataset
dataroot_gt: ./datasets/val_set5/Set5
dataroot_lq: ./datasets/val_set5/Set5_bicLRx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: val_set14
type: PairedImageDataset
dataroot_gt: ./datasets/val_set14/Set14
dataroot_lq: ./datasets/val_set14/Set14_bicLRx4
io_backend:
type: disk
test_3:
name: div2k100
type: PairedImageDataset
dataroot_gt: ./datasets/DIV2K100/DIV2K_valid_HR
dataroot_lq: ./datasets/DIV2K100/DIV2K_valid_bicLRx4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RCAN
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_group: 10
num_block: 20
squeeze_factor: 16
upscale: 4
res_scale: 1
img_range: 255.
rgb_mean: [0.4488, 0.4371, 0.4040]
save_img: true
# path
path:
pretrain_network_g: ./experiments/pretrained_models/RCAN/RCAN_BIX4-official.pth
strict_load_g: true
name: 004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb
model_type: SRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb/models/net_g_400000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: 002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb
model_type: SRModel
scale: 2
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx2
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx2
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X2
filename_tmpl: '{}x2'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 2
# path
path:
pretrain_network_g: experiments/002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 2
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 2
test_y_channel: false
name: 003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb
model_type: SRModel
scale: 3
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx3
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx3
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X3
filename_tmpl: '{}x3'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 3
# path
path:
pretrain_network_g: experiments/003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 3
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 3
test_y_channel: false
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: SingleImageDataset
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: SingleImageDataset
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
name: TOF_official
model_type: VideoBaseModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vid4
type: VideoTestDataset
dataroot_gt: datasets/Vid4/GT
dataroot_lq: datasets/Vid4/BIx4up_direct
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: TOFlow
adapt_official_weights: true
save_img: true
# path
path:
pretrain_network_g: experiments/pretrained_models/TOF/tof_x4_vimeo90k_official-32c9e01f.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr_y: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: true
ssim_y:
type: calculate_ssim
crop_border: 0
test_y_channel: true
# general settings
# CUDA_VISIBLE_DEVICES=6 python basicsr/train.py -opt options/train/BasicVSR/0928_train_BasicVSR_REDS.yml --debug
name: 0928_train_BasicVSR_REDS
model_type: VideoRecurrentModel
scale: 4
num_gpu: auto # official: 8 GPUs
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: REDS
type: REDSRecurrentDataset
dataroot_gt: datasets/data/REDS/train/train_sharp
dataroot_lq: datasets/data/REDS/train/train_sharp_bicubic/X4
meta_info_file: basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition: REDS4 # set to 'official' when use the official validation partition
test_mode: False
io_backend:
type: disk
num_frame: 15
gt_size: 256
interval_list: [1]
random_reverse: false
use_hflip: true
use_rot: true
# data loader
use_shuffle: true
num_worker_per_gpu: 6
batch_size_per_gpu: 4
dataset_enlarge_ratio: 200
prefetch_mode: ~
val:
name: REDS4
type: VideoRecurrentTestDataset
dataroot_gt: datasets/data/REDS4/GT
dataroot_lq: datasets/data/REDS4/sharp_bicubic
cache_data: True
io_backend:
type: disk
num_frame: -1 # not needed
# network structures
network_g:
type: BasicVSR
num_feat: 64
num_block: 30
spynet_path: experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
# path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 2e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: CosineAnnealingRestartLR
periods: [300000]
restart_weights: [1]
eta_min: !!float 1e-7
total_iter: 300000
warmup_iter: -1 # no warm up
fix_flow: 5000
flow_lr_mul: 0.125
# losses
pixel_opt:
type: CharbonnierLoss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 5e3
save_img: false
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500
find_unused_parameters: true
# general settings
# CUDA_VISIBLE_DEVICES=5 python basicsr/train.py -opt options/train/BasicVSR/0928_train_BasicVSR_hdtf3.yml --debug
name: 0928_train_BasicVSR_hdtf3
model_type: VideoRecurrentModel
scale: 2
num_gpu: auto # official: 8 GPUs
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: HDTF
type: HDTFRecurrentDataset
dataroot_gt: datasets/data/HDTF_images_100/512
dataroot_lq: datasets/data/HDTF_images_100/256
test_mode: False
io_backend:
type: disk
num_frame: 7
gt_size: 512
interval_list: [1]
random_reverse: false
use_hflip: true
use_rot: False
# data loader
use_shuffle: true
num_worker_per_gpu: 6
batch_size_per_gpu: 1
dataset_enlarge_ratio: 200
prefetch_mode: ~
val:
name: REDS4
type: VideoRecurrentTestDataset
dataroot_gt: datasets/data/HDTF_images_100/512
dataroot_lq: datasets/data/HDTF_images_100/256
cache_data: True
io_backend:
type: disk
num_frame: -1 # not needed
# network structures
network_g:
type: BasicVSR
num_feat: 64
num_block: 30
spynet_path: experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
scale: 2
# path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 2e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: CosineAnnealingRestartLR
periods: [300000]
restart_weights: [1]
eta_min: !!float 1e-7
total_iter: 300000
warmup_iter: -1 # no warm up
fix_flow: 5000
flow_lr_mul: 0.125
# losses
pixel_opt:
type: CharbonnierLoss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 5e3
save_img: true
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500
find_unused_parameters: true
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment