# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """This code is copied fron NVIDIA apex: https://github.com/NVIDIA/apex with some changes. """ import numbers import torch from torch.nn.parameter import Parameter from torch.nn import init import importlib from torch.nn import functional as F import inspect from megatron.core.utils import make_viewless_tensor try: from apex.contrib.layer_norm.layer_norm import FastLayerNormFN #HAVE_PERSIST_LAYER_NORM = True HAVE_PERSIST_LAYER_NORM = False except: HAVE_PERSIST_LAYER_NORM = False from apex.normalization.fused_layer_norm import FusedLayerNormAffineFunction global fused_layer_norm_cuda fused_layer_norm_cuda = None class MixedFusedLayerNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5, no_persist_layer_norm=True, sequence_parallel=False, apply_layernorm_1p=False, mem_efficient_ln=True): super(MixedFusedLayerNorm, self).__init__() self.apply_layernorm_1p = apply_layernorm_1p self.mem_efficient_ln = mem_efficient_ln global fused_layer_norm_cuda fused_layer_norm_cuda = importlib.import_module("fused_layer_norm_cuda") # List of hiddens sizes supported in the persistent layer norm kernel # If the hidden size is not supported, fall back to the non-persistent # kernel. persist_ln_hidden_sizes = [1024, 1536, 2048, 2304, 3072, 3840, 4096, 5120, 6144, 8192, 10240, 12288, 12800, 15360, 16384, 18432, 20480, 24576, 25600, 30720, 32768, 40960, 49152, 65536] if normalized_shape not in persist_ln_hidden_sizes or \ not HAVE_PERSIST_LAYER_NORM: no_persist_layer_norm = True if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.weight = Parameter(torch.Tensor(*normalized_shape)) self.bias = Parameter(torch.Tensor(*normalized_shape)) self.reset_parameters() self.no_persist_layer_norm = no_persist_layer_norm self.sequence_parallel = sequence_parallel # set sequence parallelism flag on weight and bias parameters setattr(self.weight, 'sequence_parallel', self.sequence_parallel) setattr(self.bias, 'sequence_parallel', self.sequence_parallel) def reset_parameters(self): if self.apply_layernorm_1p: init.zeros_(self.weight) init.zeros_(self.bias) else: init.ones_(self.weight) init.zeros_(self.bias) def forward(self, input): weight = self.weight + 1 if self.apply_layernorm_1p else self.weight # CPU path is here for unittest sake. if not input.is_cuda: print("WARNING! The input of FusedLayerNorm should be on the GPU." "This warning should only be triggered in the FusedLayerNorm unit tests.") return F.layer_norm(input, self.normalized_shape, weight, self.bias, self.eps) if self.no_persist_layer_norm: # Apex does not have versions yet (https://github.com/NVIDIA/apex/pull/1648), so we need to inspect # the function manually on whether the extra arg introduced in https://github.com/NVIDIA/apex/pull/1715 exists yet if 'memory_efficient' in inspect.getfullargspec(FusedLayerNormAffineFunction.forward).args: return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps, self.mem_efficient_ln) else: return FusedLayerNormAffineFunction.apply(input, weight, self.bias, self.normalized_shape, self.eps) else: output = FastLayerNormFN.apply(input, weight, self.bias, self.eps) # Apex's fast layer norm function outputs a 'view' tensor (i.e., has # a populated '_base' field). This will result in schedule.py's # deallocate_output_tensor() throwing an error, so a viewless tensor is # created to prevent this. output = make_viewless_tensor(inp = output, requires_grad = input.requires_grad, keep_graph = True) return output