#!/bin/bash dir=`pwd` ############################################################################### ### Main configs ### The main configs are from Megatron-LM paper ### https://arxiv.org/abs/1909.08053. Choose based on your desired model size ### or build your own configs. seq_len=512 global_batch_size=1024 lr=1e-4 min_lr=1e-5 ## init_std is the standard deviation for weight initialization. Usually larger ## model needs lower std. Here we roughly follow a heuristic equation of ## sqrt(1/3/hidden_size) from https://arxiv.org/pdf/2201.11990.pdf ## In addition, we find that the 3.9B model (even after tuning init_std) has ## NaN loss issue from the beginning thus unable to train. This is probably ## because in this example we use the public Pile data, which is a more diverse ## (and potentially more noisy) data than what used in Megatron paper. One ## potential solution is only use the sub datasets in Pile that are also ## used by Megatron paper. ## BERT 110M (same config as original BERT-Base model) ## This config is not included in Megatron-LM paper # model_size=0.11 # num_layers=12 # hidden_size=768 # num_attn_heads=12 # init_std=0.02 ## BERT 336M (same config as original BERT-Large model) model_size=0.336 num_layers=24 hidden_size=1024 num_attn_heads=16 init_std=0.02 ## BERT 1.3B # model_size=1.3 # num_layers=24 # hidden_size=2048 # num_attn_heads=32 # init_std=0.013 ## BERT 3.9B # model_size=3.9 # num_layers=48 # hidden_size=2560 # num_attn_heads=40 # init_std=0.011 ############################################################################### ### Training duration configs ## The main termination condition, original Megatron paper trains for 2M iters. train_iters_in_million=2 train_iters=$((${train_iters_in_million} * 1000000)) ############################################################################### ### lr configs ## lr warmup and decay duration. Original Megatron paper uses 10000 warmup ## iters. Decay iters is the same as train iters. lr_warmup_iters=10000 lr_decay_iters_in_million=${train_iters_in_million} lr_decay_iters=$((${lr_decay_iters_in_million} * 1000000)) lr_decay_style="linear" ############################################################################### ### Parallelism configs ## Model parallelism, 1 is no MP mp_size=1 ## Pipeline parallelism. To disable PP, set pp_size to 1 and no_pp to true. ## Currently pipeline parallelism is not supported for BERT model: DeepSpeed's ## pipeline parallelism is only integrated with the GPT case, and currently ## DeepSpeed is not integrated with Megatron's own pipeline parallelism. pp_size=1 no_pp="true" ## ZeRO stage zero_stage=0 ## Total number of GPUs. ds_ssh is from DeepSpeed library. num_gpus=$(($(ds_ssh nvidia-smi --query-gpu=name --format=csv,noheader | wc -l)-2)) num_gpus_pernode=$(nvidia-smi --query-gpu=name --format=csv,noheader | wc -l) num_node=$(( ${num_gpus} / ${num_gpus_pernode} )) ## Data parallel size. dp_size=$(( ${num_gpus} / ${pp_size} / ${mp_size} )) ## Micro batch size per GPU ## Make sure that batch_size <= global_batch_size*pp_size*mp_size/num_gpus ## Below batch_size calculation assumes the case without gradient accumulation. ## Manually set it to a lower value if you hit out of memory during training. batch_size=$(( ${global_batch_size} / ${dp_size} )) ############################################################################### ### Misc configs log_interval=100 eval_iters=10 eval_interval=1000 # num_save controls how frequent to save checkpoint. num_save=20 means that a # checkpoint will be saved every 5% of training. For longer training you would # want larger num_save to save more frequently, and vice versa. num_save=100 save_interval=$((${train_iters} / ${num_save})) ## Activation checkpointing saves GPU memory, but reduces training speed # activation_checkpoint="true" activation_checkpoint="false" ## Whether or not log optimizer states (norms, max abs values) to tensorboard. ## This is not required for training and might save GPU memory when turned off. log_optimizer_state="true" ############################################################################### ### Output and data configs current_time=$(date "+%Y.%m.%d-%H.%M.%S") host="${HOSTNAME}" ## Public the Pile dataset, see prepare_pile_data.py in the same directory ## about how to download and preprocess the data. jobname="bert-pile" ## For internal use. Change data_home to your own training data path. data_home="/vc_data_blob/users/conglli/the_pile_bert" if [[ "$host" == *"webxt"* ]]; then data_home="/blob/data/the_pile_bert" fi data_path="${data_home}/pile_bert_train_text_sentence" vocab_path="bert-large-uncased-vocab.txt" if [ ! -f "$vocab_path" ]; then wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt fi ## Number of workers for dataloader. We found that for BERT pre-training, ## num_workers will greatly affect data loading time and overall training ## time. In our experiment with 64 GPUs, the performance reaches peak at ## num_workers = 4 but it may differ depending on hardware. Also note that ## larger num_workers add more CPU computation/memory overhead. num_workers=4 jobname="${jobname}-${model_size}B-iters-${train_iters_in_million}M" jobname="${jobname}-lr-${lr}-min-${min_lr}-wmup-${lr_warmup_iters}-dcy-${lr_decay_iters_in_million}M-sty-${lr_decay_style}" jobname="${jobname}-gbs-${global_batch_size}-mbs-${batch_size}-gpu-${num_gpus}-zero-${zero_stage}-mp-${mp_size}-pp-${pp_size}" if [ "${no_pp}" = "true" ]; then jobname="${jobname}-nopp" fi username=$(whoami) output_home="/vc_data_blob/users/${username}/project/bert_with_pile" if [[ "$host" == *"webxt"* ]]; then output_home="/blob/users/${username}/project/bert_with_pile" fi log_path="${output_home}/log/" checkpoint_path="${output_home}/checkpoint/${jobname}" ## Microsoft internal constraint: because tensorboard is logged by last rank, ## it's better to put the path in NFS instead of Blob. tensorboard_dir="/vc_data/users/${username}/project/bert_with_pile/tensorboard/" tensorboard_path="${tensorboard_dir}${jobname}_${host}_${current_time}" mkdir -p ${log_path} mkdir -p ${checkpoint_path} mkdir -p ${tensorboard_path} ############################################################################### data_options=" \ --vocab-file ${vocab_path} \ --data-path ${data_path} \ --data-impl mmap" megatron_options=" \ --override-opt_param-scheduler \ --adam-beta1 0.9 \ --adam-beta2 0.999 \ --init-method-std ${init_std} \ --tensor-model-parallel-size ${mp_size} \ --lr-decay-iters ${lr_decay_iters} \ --lr-warmup-iters ${lr_warmup_iters} \ --micro-batch-size ${batch_size} \ --global-batch-size ${global_batch_size} \ --num-layers ${num_layers} \ --hidden-size ${hidden_size} \ --num-attention-heads ${num_attn_heads} \ --seq-length ${seq_len} \ --max-position-embeddings ${seq_len} \ --train-iters ${train_iters} \ --lr ${lr} \ --min-lr ${min_lr} \ --lr-decay-style ${lr_decay_style} \ --split 949,50,1 \ --log-interval ${log_interval} \ --eval-interval ${eval_interval} \ --eval-iters ${eval_iters} \ --save-interval ${save_interval} \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --num-workers ${num_workers} \ --fp16 \ --load ${checkpoint_path} \ --save ${checkpoint_path} \ --tensorboard-queue-size 1 \ --log-timers-to-tensorboard \ --log-batch-size-to-tensorboard \ --log-validation-ppl-to-tensorboard \ --tensorboard-dir ${tensorboard_path}" if [ "${activation_checkpoint}" = "true" ]; then megatron_options="${megatron_options} \ --checkpoint-activations" fi if [ "${log_optimizer_state}" = "true" ]; then megatron_options="${megatron_options} \ --log-optimizer-states-to-tensorboard" fi template_json="ds_config_bert_TEMPLATE.json" config_json="ds_config_bert_bsz${global_batch_size}_mbsz${batch_size}_log${log_interval}_zero${zero_stage}.json" if [[ $zero_stage -gt 0 ]]; then sed "s/CONFIG_BATCH_SIZE/${global_batch_size}/" ${template_json} \ | sed "s/CONFIG_MBSIZE/${batch_size}/" \ | sed "s/LOG_INTERVAL/${log_interval}/" \ | sed "s/ZERO_STAGE/${zero_stage}/" \ | sed "s/PRESCALE_GRAD/false/" \ | sed "s/CONFIG_FP16_ENABLED/true/" \ | sed "s/CONFIG_BF16_ENABLED/false/" \ > ${config_json} else sed "s/CONFIG_BATCH_SIZE/${global_batch_size}/" ${template_json} \ | sed "s/CONFIG_MBSIZE/${batch_size}/" \ | sed "s/LOG_INTERVAL/${log_interval}/" \ | sed "s/ZERO_STAGE/${zero_stage}/" \ | sed "s/PRESCALE_GRAD/true/" \ | sed "s/CONFIG_FP16_ENABLED/true/" \ | sed "s/CONFIG_BF16_ENABLED/false/" \ > ${config_json} fi deepspeed_options=" \ --deepspeed \ --deepspeed_config ${config_json} \ --zero-stage ${zero_stage} \ --pipeline-model-parallel-size ${pp_size}" if [[ "${no_pp}" = "true" ]]; then deepspeed_options="${deepspeed_options} \ --no-pipeline-parallel" fi if [ "${activation_checkpoint}" = "true" ]; then deepspeed_options="${deepspeed_options} \ --deepspeed-activation-checkpointing" fi ## When saving checkpoint to a storage with cache, their could be consistency ## issue of the pointer to latest checkpoint. Here we find the correct pointer ## and broadcast it to all nodes. iteration_file="$checkpoint_path/latest_checkpointed_iteration.txt" iteration_file_2="$checkpoint_path/latest" iteration=0 for (( node = 0; node <= num_node-1; node++ )) do if $(ssh -q worker-"$node" "test -f \"$iteration_file\""); then local_iteration=$(ssh -q worker-"$node" cat $iteration_file) iteration=$(( ${local_iteration} > ${iteration} ? ${local_iteration} : ${iteration} )) fi done if [[ $iteration -gt 0 ]]; then iteration_2="global_step${iteration}" ds_ssh "echo $iteration > $iteration_file" ds_ssh "echo $iteration_2 > $iteration_file_2" fi deepspeed ${dir}/../../pretrain_bert.py ${megatron_options} ${data_options} ${deepspeed_options} &>> ${log_path}/${jobname}_${host}_${current_time}.log