"test/torchaudio_unittest/transforms_test.py" did not exist on "3781cb2339d52744b6dd93179d09d27c2885d573"
Commit ce0e5303 authored by bailuo's avatar bailuo
Browse files

init

parents
Pipeline #2003 failed with stages
in 0 seconds
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from .GroundingDINO import build_groundingdino
def build_model(args):
# we use register to maintain models from catdet6 on.
from .registry import MODULE_BUILD_FUNCS
assert args.modelname in MODULE_BUILD_FUNCS._module_dict
build_func = MODULE_BUILD_FUNCS.get(args.modelname)
model = build_func(args)
return model
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# -*- coding: utf-8 -*-
# @Author: Yihao Chen
# @Date: 2021-08-16 16:03:17
# @Last Modified by: Shilong Liu
# @Last Modified time: 2022-01-23 15:26
# modified from mmcv
import inspect
from functools import partial
class Registry(object):
def __init__(self, name):
self._name = name
self._module_dict = dict()
def __repr__(self):
format_str = self.__class__.__name__ + "(name={}, items={})".format(
self._name, list(self._module_dict.keys())
)
return format_str
def __len__(self):
return len(self._module_dict)
@property
def name(self):
return self._name
@property
def module_dict(self):
return self._module_dict
def get(self, key):
return self._module_dict.get(key, None)
def registe_with_name(self, module_name=None, force=False):
return partial(self.register, module_name=module_name, force=force)
def register(self, module_build_function, module_name=None, force=False):
"""Register a module build function.
Args:
module (:obj:`nn.Module`): Module to be registered.
"""
if not inspect.isfunction(module_build_function):
raise TypeError(
"module_build_function must be a function, but got {}".format(
type(module_build_function)
)
)
if module_name is None:
module_name = module_build_function.__name__
if not force and module_name in self._module_dict:
raise KeyError("{} is already registered in {}".format(module_name, self.name))
self._module_dict[module_name] = module_build_function
return module_build_function
MODULE_BUILD_FUNCS = Registry("model build functions")
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Utilities for bounding box manipulation and GIoU.
"""
import torch
from torchvision.ops.boxes import box_area
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
# import ipdb; ipdb.set_trace()
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union + 1e-6)
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
Returns a [N, M] pairwise matrix, where N = len(boxes1)
and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
# except:
# import ipdb; ipdb.set_trace()
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
return iou - (area - union) / (area + 1e-6)
# modified from torchvision to also return the union
def box_iou_pairwise(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
wh = (rb - lt).clamp(min=0) # [N,2]
inter = wh[:, 0] * wh[:, 1] # [N]
union = area1 + area2 - inter
iou = inter / union
return iou, union
def generalized_box_iou_pairwise(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
Input:
- boxes1, boxes2: N,4
Output:
- giou: N, 4
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
assert boxes1.shape == boxes2.shape
iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
lt = torch.min(boxes1[:, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,2]
area = wh[:, 0] * wh[:, 1]
return iou - (area - union) / area
def masks_to_boxes(masks):
"""Compute the bounding boxes around the provided masks
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensors, with the boxes in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
x_mask = masks * x.unsqueeze(0)
x_max = x_mask.flatten(1).max(-1)[0]
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
y_mask = masks * y.unsqueeze(0)
y_max = y_mask.flatten(1).max(-1)[0]
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
return torch.stack([x_min, y_min, x_max, y_max], 1)
if __name__ == "__main__":
x = torch.rand(5, 4)
y = torch.rand(3, 4)
iou, union = box_iou(x, y)
import ipdb
ipdb.set_trace()
from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
def get_tokenlizer(text_encoder_type):
if not isinstance(text_encoder_type, str):
# print("text_encoder_type is not a str")
if hasattr(text_encoder_type, "text_encoder_type"):
text_encoder_type = text_encoder_type.text_encoder_type
elif text_encoder_type.get("text_encoder_type", False):
text_encoder_type = text_encoder_type.get("text_encoder_type")
else:
raise ValueError(
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
)
print("final text_encoder_type: {}".format(text_encoder_type))
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
return tokenizer
def get_pretrained_language_model(text_encoder_type):
if text_encoder_type == "bert-base-uncased":
return BertModel.from_pretrained(text_encoder_type)
if text_encoder_type == "roberta-base":
return RobertaModel.from_pretrained(text_encoder_type)
raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
from typing import Tuple, List
import cv2
import numpy as np
import supervision as sv
import torch
from PIL import Image
from torchvision.ops import box_convert
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.misc import clean_state_dict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import get_phrases_from_posmap
import pdb
# ----------------------------------------------------------------------------------------------------------------------
# OLD API
# ----------------------------------------------------------------------------------------------------------------------
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict(
model,
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
device: str = "cuda"
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
mask = prediction_logits.max(dim=1)[0] > box_threshold
logits = prediction_logits[mask] # logits.shape = (n, 256)
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
for logit
in logits
]
return boxes, logits.max(dim=1)[0], phrases
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [
f"{phrase} {logit:.2f}"
for phrase, logit
in zip(phrases, logits)
]
box_annotator = sv.BoxAnnotator()
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
return annotated_frame
# ----------------------------------------------------------------------------------------------------------------------
# NEW API
# ----------------------------------------------------------------------------------------------------------------------
class Model:
def __init__(
self,
model_config_path: str,
model_checkpoint_path: str,
device: str = "cuda"
):
self.model = load_model(
model_config_path=model_config_path,
model_checkpoint_path=model_checkpoint_path,
device=device
).to(device)
self.device = device
def predict_with_caption(
self,
image: np.ndarray,
caption: str,
box_threshold: float = 0.35,
text_threshold: float = 0.25
) -> Tuple[sv.Detections, List[str]]:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections, labels = model.predict_with_caption(
image=image,
caption=caption,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
"""
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.device)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(
source_h=source_h,
source_w=source_w,
boxes=boxes,
logits=logits)
return detections, phrases
def predict_with_classes(
self,
image: np.ndarray,
classes: List[str],
box_threshold: float,
text_threshold: float
) -> sv.Detections:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections = model.predict_with_classes(
image=image,
classes=CLASSES,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections)
"""
caption = ". ".join(classes)
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=self.device)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(
source_h=source_h,
source_w=source_w,
boxes=boxes,
logits=logits)
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
detections.class_id = class_id
return detections
@staticmethod
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
image_transformed, _ = transform(image_pillow, None)
return image_transformed
@staticmethod
def post_process_result(
source_h: int,
source_w: int,
boxes: torch.Tensor,
logits: torch.Tensor
) -> sv.Detections:
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
confidence = logits.numpy()
return sv.Detections(xyxy=xyxy, confidence=confidence)
@staticmethod
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
class_ids = []
for phrase in phrases:
try:
# class_ids.append(classes.index(phrase))
class_ids.append(Model.find_index(phrase, classes))
except ValueError:
class_ids.append(None)
return np.array(class_ids)
@staticmethod
def find_index(string, lst):
# if meet string like "lake river" will only keep "lake"
# this is an hack implementation for visualization which will be updated in the future
string = string.lower().split()[0]
for i, s in enumerate(lst):
if string in s.lower():
return i
return -1
\ No newline at end of file
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import functools
import logging
import os
import sys
from termcolor import colored
class _ColorfulFormatter(logging.Formatter):
def __init__(self, *args, **kwargs):
self._root_name = kwargs.pop("root_name") + "."
self._abbrev_name = kwargs.pop("abbrev_name", "")
if len(self._abbrev_name):
self._abbrev_name = self._abbrev_name + "."
super(_ColorfulFormatter, self).__init__(*args, **kwargs)
def formatMessage(self, record):
record.name = record.name.replace(self._root_name, self._abbrev_name)
log = super(_ColorfulFormatter, self).formatMessage(record)
if record.levelno == logging.WARNING:
prefix = colored("WARNING", "red", attrs=["blink"])
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
prefix = colored("ERROR", "red", attrs=["blink", "underline"])
else:
return log
return prefix + " " + log
# so that calling setup_logger multiple times won't add many handlers
@functools.lru_cache()
def setup_logger(output=None, distributed_rank=0, *, color=True, name="imagenet", abbrev_name=None):
"""
Initialize the detectron2 logger and set its verbosity level to "INFO".
Args:
output (str): a file name or a directory to save log. If None, will not save log file.
If ends with ".txt" or ".log", assumed to be a file name.
Otherwise, logs will be saved to `output/log.txt`.
name (str): the root module name of this logger
Returns:
logging.Logger: a logger
"""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
if abbrev_name is None:
abbrev_name = name
plain_formatter = logging.Formatter(
"[%(asctime)s.%(msecs)03d]: %(message)s", datefmt="%m/%d %H:%M:%S"
)
# stdout logging: master only
if distributed_rank == 0:
ch = logging.StreamHandler(stream=sys.stdout)
ch.setLevel(logging.DEBUG)
if color:
formatter = _ColorfulFormatter(
colored("[%(asctime)s.%(msecs)03d]: ", "green") + "%(message)s",
datefmt="%m/%d %H:%M:%S",
root_name=name,
abbrev_name=str(abbrev_name),
)
else:
formatter = plain_formatter
ch.setFormatter(formatter)
logger.addHandler(ch)
# file logging: all workers
if output is not None:
if output.endswith(".txt") or output.endswith(".log"):
filename = output
else:
filename = os.path.join(output, "log.txt")
if distributed_rank > 0:
filename = filename + f".rank{distributed_rank}"
os.makedirs(os.path.dirname(filename), exist_ok=True)
fh = logging.StreamHandler(_cached_log_stream(filename))
fh.setLevel(logging.DEBUG)
fh.setFormatter(plain_formatter)
logger.addHandler(fh)
return logger
# cache the opened file object, so that different calls to `setup_logger`
# with the same file name can safely write to the same file.
@functools.lru_cache(maxsize=None)
def _cached_log_stream(filename):
return open(filename, "a")
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import colorsys
import datetime
import functools
import io
import json
import os
import pickle
import subprocess
import time
from collections import OrderedDict, defaultdict, deque
from typing import List, Optional
import numpy as np
import torch
import torch.distributed as dist
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
from torch import Tensor
__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7
if __torchvision_need_compat_flag:
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
if d.shape[0] == 0:
return 0
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
if os.environ.get("SHILONG_AMP", None) == "1":
eps = 1e-4
else:
eps = 1e-6
return self.total / (self.count + eps)
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value,
)
@functools.lru_cache()
def _get_global_gloo_group():
"""
Return a process group based on gloo backend, containing all the ranks
The result is cached.
"""
if dist.get_backend() == "nccl":
return dist.new_group(backend="gloo")
return dist.group.WORLD
def all_gather_cpu(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
cpu_group = _get_global_gloo_group()
buffer = io.BytesIO()
torch.save(data, buffer)
data_view = buffer.getbuffer()
device = "cuda" if cpu_group is None else "cpu"
tensor = torch.ByteTensor(data_view).to(device)
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
if cpu_group is None:
dist.all_gather(size_list, local_size)
else:
print("gathering on cpu")
dist.all_gather(size_list, local_size, group=cpu_group)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
assert isinstance(local_size.item(), int)
local_size = int(local_size.item())
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
tensor = torch.cat((tensor, padding), dim=0)
if cpu_group is None:
dist.all_gather(tensor_list, tensor)
else:
dist.all_gather(tensor_list, tensor, group=cpu_group)
data_list = []
for size, tensor in zip(size_list, tensor_list):
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
buffer = io.BytesIO(tensor.cpu().numpy())
obj = torch.load(buffer)
data_list.append(obj)
return data_list
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
if os.getenv("CPU_REDUCE") == "1":
return all_gather_cpu(data)
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
# print(name, str(meter))
# import ipdb;ipdb.set_trace()
if meter.count > 0:
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, logger=None):
if logger is None:
print_func = print
else:
print_func = logger.info
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
# import ipdb; ipdb.set_trace()
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print_func(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print_func(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print_func(
"{} Total time: {} ({:.4f} s / it)".format(
header, total_time_str, total_time / len(iterable)
)
)
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
sha = "N/A"
diff = "clean"
branch = "N/A"
try:
sha = _run(["git", "rev-parse", "HEAD"])
subprocess.check_output(["git", "diff"], cwd=cwd)
diff = _run(["git", "diff-index", "HEAD"])
diff = "has uncommited changes" if diff else "clean"
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def collate_fn(batch):
# import ipdb; ipdb.set_trace()
batch = list(zip(*batch))
batch[0] = nested_tensor_from_tensor_list(batch[0])
return tuple(batch)
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
if mask == "auto":
self.mask = torch.zeros_like(tensors).to(tensors.device)
if self.mask.dim() == 3:
self.mask = self.mask.sum(0).to(bool)
elif self.mask.dim() == 4:
self.mask = self.mask.sum(1).to(bool)
else:
raise ValueError(
"tensors dim must be 3 or 4 but {}({})".format(
self.tensors.dim(), self.tensors.shape
)
)
def imgsize(self):
res = []
for i in range(self.tensors.shape[0]):
mask = self.mask[i]
maxH = (~mask).sum(0).max()
maxW = (~mask).sum(1).max()
res.append(torch.Tensor([maxH, maxW]))
return res
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def to_img_list_single(self, tensor, mask):
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim())
maxH = (~mask).sum(0).max()
maxW = (~mask).sum(1).max()
img = tensor[:, :maxH, :maxW]
return img
def to_img_list(self):
"""remove the padding and convert to img list
Returns:
[type]: [description]
"""
if self.tensors.dim() == 3:
return self.to_img_list_single(self.tensors, self.mask)
else:
res = []
for i in range(self.tensors.shape[0]):
tensor_i = self.tensors[i]
mask_i = self.mask[i]
res.append(self.to_img_list_single(tensor_i, mask_i))
return res
@property
def device(self):
return self.tensors.device
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
@property
def shape(self):
return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape}
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("not supported")
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
).to(torch.int64)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"])
# launch by torch.distributed.launch
# Single node
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
# Multi nodes
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
# args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
# local_world_size = int(os.environ['GPU_PER_NODE_COUNT'])
# args.world_size = args.world_size * local_world_size
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
# args.rank = args.rank * local_world_size + args.local_rank
print(
"world size: {}, rank: {}, local rank: {}".format(
args.world_size, args.rank, args.local_rank
)
)
print(json.dumps(dict(os.environ), indent=2))
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"])
args.world_size = int(os.environ["SLURM_NPROCS"])
print(
"world size: {}, world rank: {}, local rank: {}, device_count: {}".format(
args.world_size, args.rank, args.local_rank, torch.cuda.device_count()
)
)
else:
print("Not using distributed mode")
args.distributed = False
args.world_size = 1
args.rank = 0
args.local_rank = 0
return
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
args.distributed = True
torch.cuda.set_device(args.local_rank)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend,
world_size=args.world_size,
rank=args.rank,
init_method=args.dist_url,
)
print("Before torch.distributed.barrier()")
torch.distributed.barrier()
print("End torch.distributed.barrier()")
setup_for_distributed(args.rank == 0)
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
if target.numel() == 0:
return [torch.zeros([], device=output.device)]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
@torch.no_grad()
def accuracy_onehot(pred, gt):
"""_summary_
Args:
pred (_type_): n, c
gt (_type_): n, c
"""
tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum()
acc = tp / gt.shape[0] * 100
return acc
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if __torchvision_need_compat_flag < 0.7:
if input.numel() > 0:
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
class color_sys:
def __init__(self, num_colors) -> None:
self.num_colors = num_colors
colors = []
for i in np.arange(0.0, 360.0, 360.0 / num_colors):
hue = i / 360.0
lightness = (50 + np.random.rand() * 10) / 100.0
saturation = (90 + np.random.rand() * 10) / 100.0
colors.append(
tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)])
)
self.colors = colors
def __call__(self, idx):
return self.colors[idx]
def inverse_sigmoid(x, eps=1e-3):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def clean_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k[:7] == "module.":
k = k[7:] # remove `module.`
new_state_dict[k] = v
return new_state_dict
# ==========================================================
# Modified from mmcv
# ==========================================================
import ast
import os.path as osp
import shutil
import sys
import tempfile
from argparse import Action
from importlib import import_module
import platform
from addict import Dict
from yapf.yapflib.yapf_api import FormatCode
BASE_KEY = "_base_"
DELETE_KEY = "_delete_"
RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"]
def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
if not osp.isfile(filename):
raise FileNotFoundError(msg_tmpl.format(filename))
class ConfigDict(Dict):
def __missing__(self, name):
raise KeyError(name)
def __getattr__(self, name):
try:
value = super(ConfigDict, self).__getattr__(name)
except KeyError:
ex = AttributeError(f"'{self.__class__.__name__}' object has no " f"attribute '{name}'")
except Exception as e:
ex = e
else:
return value
raise ex
class SLConfig(object):
"""
config files.
only support .py file as config now.
ref: mmcv.utils.config
Example:
>>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
>>> cfg.a
1
>>> cfg.b
{'b1': [0, 1]}
>>> cfg.b.b1
[0, 1]
>>> cfg = Config.fromfile('tests/data/config/a.py')
>>> cfg.filename
"/home/kchen/projects/mmcv/tests/data/config/a.py"
>>> cfg.item4
'test'
>>> cfg
"Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
"{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
"""
@staticmethod
def _validate_py_syntax(filename):
with open(filename) as f:
content = f.read()
try:
ast.parse(content)
except SyntaxError:
raise SyntaxError("There are syntax errors in config " f"file {filename}")
@staticmethod
def _file2dict(filename):
filename = osp.abspath(osp.expanduser(filename))
check_file_exist(filename)
if filename.lower().endswith(".py"):
with tempfile.TemporaryDirectory() as temp_config_dir:
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
temp_config_name = osp.basename(temp_config_file.name)
if platform.system() == 'Windows':
temp_config_file.close()
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
temp_module_name = osp.splitext(temp_config_name)[0]
sys.path.insert(0, temp_config_dir)
SLConfig._validate_py_syntax(filename)
mod = import_module(temp_module_name)
sys.path.pop(0)
cfg_dict = {
name: value for name, value in mod.__dict__.items() if not name.startswith("__")
}
# delete imported module
del sys.modules[temp_module_name]
# close temp file
temp_config_file.close()
elif filename.lower().endswith((".yml", ".yaml", ".json")):
from .slio import slload
cfg_dict = slload(filename)
else:
raise IOError("Only py/yml/yaml/json type are supported now!")
cfg_text = filename + "\n"
with open(filename, "r") as f:
cfg_text += f.read()
# parse the base file
if BASE_KEY in cfg_dict:
cfg_dir = osp.dirname(filename)
base_filename = cfg_dict.pop(BASE_KEY)
base_filename = base_filename if isinstance(base_filename, list) else [base_filename]
cfg_dict_list = list()
cfg_text_list = list()
for f in base_filename:
_cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f))
cfg_dict_list.append(_cfg_dict)
cfg_text_list.append(_cfg_text)
base_cfg_dict = dict()
for c in cfg_dict_list:
if len(base_cfg_dict.keys() & c.keys()) > 0:
raise KeyError("Duplicate key is not allowed among bases")
# TODO Allow the duplicate key while warnning user
base_cfg_dict.update(c)
base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict)
cfg_dict = base_cfg_dict
# merge cfg_text
cfg_text_list.append(cfg_text)
cfg_text = "\n".join(cfg_text_list)
return cfg_dict, cfg_text
@staticmethod
def _merge_a_into_b(a, b):
"""merge dict `a` into dict `b` (non-inplace).
values in `a` will overwrite `b`.
copy first to avoid inplace modification
Args:
a ([type]): [description]
b ([type]): [description]
Returns:
[dict]: [description]
"""
# import ipdb; ipdb.set_trace()
if not isinstance(a, dict):
return a
b = b.copy()
for k, v in a.items():
if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False):
if not isinstance(b[k], dict) and not isinstance(b[k], list):
# if :
# import ipdb; ipdb.set_trace()
raise TypeError(
f"{k}={v} in child config cannot inherit from base "
f"because {k} is a dict in the child config but is of "
f"type {type(b[k])} in base config. You may set "
f"`{DELETE_KEY}=True` to ignore the base config"
)
b[k] = SLConfig._merge_a_into_b(v, b[k])
elif isinstance(b, list):
try:
_ = int(k)
except:
raise TypeError(
f"b is a list, " f"index {k} should be an int when input but {type(k)}"
)
b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)])
else:
b[k] = v
return b
@staticmethod
def fromfile(filename):
cfg_dict, cfg_text = SLConfig._file2dict(filename)
return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename)
def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
if cfg_dict is None:
cfg_dict = dict()
elif not isinstance(cfg_dict, dict):
raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}")
for key in cfg_dict:
if key in RESERVED_KEYS:
raise KeyError(f"{key} is reserved for config file")
super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict))
super(SLConfig, self).__setattr__("_filename", filename)
if cfg_text:
text = cfg_text
elif filename:
with open(filename, "r") as f:
text = f.read()
else:
text = ""
super(SLConfig, self).__setattr__("_text", text)
@property
def filename(self):
return self._filename
@property
def text(self):
return self._text
@property
def pretty_text(self):
indent = 4
def _indent(s_, num_spaces):
s = s_.split("\n")
if len(s) == 1:
return s_
first = s.pop(0)
s = [(num_spaces * " ") + line for line in s]
s = "\n".join(s)
s = first + "\n" + s
return s
def _format_basic_types(k, v, use_mapping=False):
if isinstance(v, str):
v_str = f"'{v}'"
else:
v_str = str(v)
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: {v_str}"
else:
attr_str = f"{str(k)}={v_str}"
attr_str = _indent(attr_str, indent)
return attr_str
def _format_list(k, v, use_mapping=False):
# check if all items in the list are dict
if all(isinstance(_, dict) for _ in v):
v_str = "[\n"
v_str += "\n".join(
f"dict({_indent(_format_dict(v_), indent)})," for v_ in v
).rstrip(",")
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: {v_str}"
else:
attr_str = f"{str(k)}={v_str}"
attr_str = _indent(attr_str, indent) + "]"
else:
attr_str = _format_basic_types(k, v, use_mapping)
return attr_str
def _contain_invalid_identifier(dict_str):
contain_invalid_identifier = False
for key_name in dict_str:
contain_invalid_identifier |= not str(key_name).isidentifier()
return contain_invalid_identifier
def _format_dict(input_dict, outest_level=False):
r = ""
s = []
use_mapping = _contain_invalid_identifier(input_dict)
if use_mapping:
r += "{"
for idx, (k, v) in enumerate(input_dict.items()):
is_last = idx >= len(input_dict) - 1
end = "" if outest_level or is_last else ","
if isinstance(v, dict):
v_str = "\n" + _format_dict(v)
if use_mapping:
k_str = f"'{k}'" if isinstance(k, str) else str(k)
attr_str = f"{k_str}: dict({v_str}"
else:
attr_str = f"{str(k)}=dict({v_str}"
attr_str = _indent(attr_str, indent) + ")" + end
elif isinstance(v, list):
attr_str = _format_list(k, v, use_mapping) + end
else:
attr_str = _format_basic_types(k, v, use_mapping) + end
s.append(attr_str)
r += "\n".join(s)
if use_mapping:
r += "}"
return r
cfg_dict = self._cfg_dict.to_dict()
text = _format_dict(cfg_dict, outest_level=True)
# copied from setup.cfg
yapf_style = dict(
based_on_style="pep8",
blank_line_before_nested_class_or_def=True,
split_before_expression_after_opening_paren=True,
)
text, _ = FormatCode(text, style_config=yapf_style, verify=True)
return text
def __repr__(self):
return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}"
def __len__(self):
return len(self._cfg_dict)
def __getattr__(self, name):
# # debug
# print('+'*15)
# print('name=%s' % name)
# print("addr:", id(self))
# # print('type(self):', type(self))
# print(self.__dict__)
# print('+'*15)
# if self.__dict__ == {}:
# raise ValueError
return getattr(self._cfg_dict, name)
def __getitem__(self, name):
return self._cfg_dict.__getitem__(name)
def __setattr__(self, name, value):
if isinstance(value, dict):
value = ConfigDict(value)
self._cfg_dict.__setattr__(name, value)
def __setitem__(self, name, value):
if isinstance(value, dict):
value = ConfigDict(value)
self._cfg_dict.__setitem__(name, value)
def __iter__(self):
return iter(self._cfg_dict)
def dump(self, file=None):
# import ipdb; ipdb.set_trace()
if file is None:
return self.pretty_text
else:
with open(file, "w") as f:
f.write(self.pretty_text)
def merge_from_dict(self, options):
"""Merge list into cfg_dict
Merge the dict parsed by MultipleKVAction into this cfg.
Examples:
>>> options = {'model.backbone.depth': 50,
... 'model.backbone.with_cp':True}
>>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
>>> cfg.merge_from_dict(options)
>>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
>>> assert cfg_dict == dict(
... model=dict(backbone=dict(depth=50, with_cp=True)))
Args:
options (dict): dict of configs to merge from.
"""
option_cfg_dict = {}
for full_key, v in options.items():
d = option_cfg_dict
key_list = full_key.split(".")
for subkey in key_list[:-1]:
d.setdefault(subkey, ConfigDict())
d = d[subkey]
subkey = key_list[-1]
d[subkey] = v
cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict")
super(SLConfig, self).__setattr__(
"_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict)
)
# for multiprocess
def __setstate__(self, state):
self.__init__(state)
def copy(self):
return SLConfig(self._cfg_dict.copy())
def deepcopy(self):
return SLConfig(self._cfg_dict.deepcopy())
class DictAction(Action):
"""
argparse action to split an argument into KEY=VALUE form
on the first = and append to a dictionary. List options should
be passed as comma separated values, i.e KEY=V1,V2,V3
"""
@staticmethod
def _parse_int_float_bool(val):
try:
return int(val)
except ValueError:
pass
try:
return float(val)
except ValueError:
pass
if val.lower() in ["true", "false"]:
return True if val.lower() == "true" else False
if val.lower() in ["none", "null"]:
return None
return val
def __call__(self, parser, namespace, values, option_string=None):
options = {}
for kv in values:
key, val = kv.split("=", maxsplit=1)
val = [self._parse_int_float_bool(v) for v in val.split(",")]
if len(val) == 1:
val = val[0]
options[key] = val
setattr(namespace, self.dest, options)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment