import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MeanShift(nn.Module): def __init__(self, mean_rgb, sub): super(MeanShift, self).__init__() sign = -1 if sub else 1 r = mean_rgb[0] * sign g = mean_rgb[1] * sign b = mean_rgb[2] * sign self.shifter = nn.Conv2d(3, 3, 1, 1, 0) self.shifter.weight.data = torch.eye(3).view(3, 3, 1, 1) self.shifter.bias.data = torch.Tensor([r, g, b]) # Freeze the mean shift layer for params in self.shifter.parameters(): params.requires_grad = False def forward(self, x): x = self.shifter(x) return x class Merge_Run(nn.Module): def __init__(self, in_channels, out_channels, ksize=3, stride=1, pad=1, dilation=1): super(Merge_Run, self).__init__() self.body1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, pad), nn.ReLU(inplace=True) ) self.body2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, 2, 2), nn.ReLU(inplace=True) ) self.body3 = nn.Sequential( nn.Conv2d(in_channels*2, out_channels, ksize, stride, pad), nn.ReLU(inplace=True) ) init_weights(self.modules) def forward(self, x): out1 = self.body1(x) out2 = self.body2(x) c = torch.cat([out1, out2], dim=1) c_out = self.body3(c) out = c_out + x return out class Merge_Run_dual(nn.Module): def __init__(self, in_channels, out_channels, ksize=3, stride=1, pad=1, dilation=1): super(Merge_Run_dual, self).__init__() self.body1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, pad), nn.ReLU(inplace=True), nn.Conv2d(in_channels, out_channels, ksize, stride, 2, 2), nn.ReLU(inplace=True) ) self.body2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, 3, 3), nn.ReLU(inplace=True), nn.Conv2d(in_channels, out_channels, ksize, stride, 4, 4), nn.ReLU(inplace=True) ) self.body3 = nn.Sequential( nn.Conv2d(in_channels*2, out_channels, ksize, stride, pad), nn.ReLU(inplace=True) ) init_weights(self.modules) def forward(self, x): out1 = self.body1(x) out2 = self.body2(x) c = torch.cat([out1, out2], dim=1) c_out = self.body3(c) out = c_out + x return out def init_weights(modules): pass class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, ksize=3, stride=1, pad=1): super(BasicBlock, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, pad), nn.ReLU(inplace=True) ) init_weights(self.modules) def forward(self, x): out = self.body(x) return out class BasicBlockSig(nn.Module): def __init__(self, in_channels, out_channels, ksize=3, stride=1, pad=1): super(BasicBlockSig, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, pad), nn.Sigmoid() ) init_weights(self.modules) def forward(self, x): out = self.body(x) return out class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, 1, 1), ) init_weights(self.modules) def forward(self, x): out = self.body(x) out = F.relu(out + x) return out class EResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, group=1): super(EResidualBlock, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 1, 1, 0), ) init_weights(self.modules) def forward(self, x): out = self.body(x) out = F.relu(out + x) return out class UpsampleBlock(nn.Module): def __init__(self, n_channels, scale, multi_scale, group=1): super(UpsampleBlock, self).__init__() if multi_scale: self.up2 = _UpsampleBlock(n_channels, scale=2, group=group) self.up3 = _UpsampleBlock(n_channels, scale=3, group=group) self.up4 = _UpsampleBlock(n_channels, scale=4, group=group) else: self.up = _UpsampleBlock(n_channels, scale=scale, group=group) self.multi_scale = multi_scale def forward(self, x, scale): if self.multi_scale: if scale == 2: return self.up2(x) elif scale == 3: return self.up3(x) elif scale == 4: return self.up4(x) else: return self.up(x) class _UpsampleBlock(nn.Module): def __init__(self, n_channels, scale, group=1): super(_UpsampleBlock, self).__init__() modules = [] if scale == 2 or scale == 4 or scale == 8: for _ in range(int(math.log(scale, 2))): modules += [nn.Conv2d(n_channels, 4*n_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)] modules += [nn.PixelShuffle(2)] elif scale == 3: modules += [nn.Conv2d(n_channels, 9*n_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)] modules += [nn.PixelShuffle(3)] self.body = nn.Sequential(*modules) init_weights(self.modules) def forward(self, x): out = self.body(x) return out def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d( in_channels, out_channels, kernel_size, padding=(kernel_size//2), bias=bias) class MeanShift(nn.Conv2d): def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) self.weight.data.div_(std.view(3, 1, 1, 1)) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) self.bias.data.div_(std) self.requires_grad = False class BasicBlock(nn.Sequential): def __init__( self, in_channels, out_channels, kernel_size, stride=1, bias=False, bn=True, act=nn.ReLU(True)): m = [nn.Conv2d( in_channels, out_channels, kernel_size, padding=(kernel_size//2), stride=stride, bias=bias) ] if bn: m.append(nn.BatchNorm2d(out_channels)) if act is not None: m.append(act) super(BasicBlock, self).__init__(*m) class ResBlock(nn.Module): def __init__( self, conv, n_feat, kernel_size, bias=True, bn=False, act=nn.ReLU(True), res_scale=1): super(ResBlock, self).__init__() m = [] for i in range(2): m.append(conv(n_feat, n_feat, kernel_size, bias=bias)) if bn: m.append(nn.BatchNorm2d(n_feat)) if i == 0: m.append(act) self.body = nn.Sequential(*m) self.res_scale = res_scale def forward(self, x): res = self.body(x).mul(self.res_scale) res += x return res class Upsampler(nn.Sequential): def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True): m = [] if (scale & (scale - 1)) == 0: # Is scale = 2^n? for _ in range(int(math.log(scale, 2))): m.append(conv(n_feat, 4 * n_feat, 3, bias)) m.append(nn.PixelShuffle(2)) if bn: m.append(nn.BatchNorm2d(n_feat)) if act: m.append(act()) elif scale == 3: m.append(conv(n_feat, 9 * n_feat, 3, bias)) m.append(nn.PixelShuffle(3)) if bn: m.append(nn.BatchNorm2d(n_feat)) if act: m.append(act()) else: raise NotImplementedError super(Upsampler, self).__init__(*m) class CALayer(nn.Module): def __init__(self, channel, reduction=16): super(CALayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.c1 = BasicBlock(channel , channel // reduction, 1, 1, 0) self.c2 = BasicBlockSig(channel // reduction, channel , 1, 1, 0) def forward(self, x): y = self.avg_pool(x) y1 = self.c1(y) y2 = self.c2(y1) return x * y2 class Block(nn.Module): def __init__(self, in_channels, out_channels, group=1): super(Block, self).__init__() self.r1 = Merge_Run_dual(in_channels, out_channels) self.r2 = ResidualBlock(in_channels, out_channels) self.r3 = EResidualBlock(in_channels, out_channels) #self.g = BasicBlock(in_channels, out_channels, 1, 1, 0) self.ca = CALayer(in_channels) def forward(self, x): r1 = self.r1(x) r2 = self.r2(r1) r3 = self.r3(r2) #g = self.g(r3) out = self.ca(r3) return out class RIDNET(nn.Module): def __init__(self): super(RIDNET, self).__init__() n_feats = 64 kernel_size = 3 reduction = 16 rgb_mean = (0.4488, 0.4371, 0.4040) rgb_std = (1.0, 1.0, 1.0) self.sub_mean = MeanShift(1, rgb_mean, rgb_std) self.add_mean = MeanShift(1, rgb_mean, rgb_std, 1) self.head = BasicBlock(3, n_feats, kernel_size, 1, 1) self.b1 = Block(n_feats, n_feats) self.b2 = Block(n_feats, n_feats) self.b3 = Block(n_feats, n_feats) self.b4 = Block(n_feats, n_feats) self.tail = nn.Conv2d(n_feats, 3, kernel_size, 1, 1, 1) def forward(self, x): s = self.sub_mean(x) h = self.head(s) b1 = self.b1(h) b2 = self.b2(b1) b3 = self.b3(b2) b_out = self.b4(b3) res = self.tail(b_out) out = self.add_mean(res) f_out = out + x return f_out