import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MeanShift(nn.Conv2d): def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(rgb_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) self.weight.data.div_(std.view(3, 1, 1, 1)) self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) self.bias.data.div_(std) self.requires_grad = False def init_weights(modules): pass class BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, ksize=3, stride=1, pad=1): super(BasicBlock, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, ksize, stride, pad), nn.ReLU(inplace=True) ) init_weights(self.modules) def forward(self, x): out = self.body(x) return out class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() self.body = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, 1, 1), ) init_weights(self.modules) def forward(self, x): out = self.body(x) out = F.relu(out + x) return out class CNN5Layer(nn.Module): def __init__(self): super(CNN5Layer, self).__init__() n_feats = 32 kernel_size = 3 rgb_mean = (0.4488, 0.4371, 0.4040) rgb_std = (1.0, 1.0, 1.0) self.sub_mean = MeanShift(1, rgb_mean, rgb_std) self.add_mean = MeanShift(1, rgb_mean, rgb_std, 1) self.head = BasicBlock(3, n_feats, kernel_size, 1, 1) self.b1 = BasicBlock(n_feats, n_feats, kernel_size, 1, 1) self.b2 = BasicBlock(n_feats, n_feats, kernel_size, 1, 1) self.b3 = BasicBlock(n_feats, n_feats, kernel_size, 1, 1) self.b4 = BasicBlock(n_feats, n_feats, kernel_size, 1, 1) self.tail = nn.Conv2d(n_feats, 3, kernel_size, 1, 1, 1) def forward(self, x): s = self.sub_mean(x) h = self.head(s) b1 = self.b1(h) b2 = self.b2(b1) b3 = self.b3(b2) b_out = self.b4(b3) res = self.tail(b_out) out = self.add_mean(res) f_out = out + x return f_out