import random import numpy as np import torch.utils.data as data import utils.utils_image as util import os from utils import utils_mask class DatasetMaskedDenoising(data.Dataset): ''' # ----------------------------------------- # dataset for BSRGAN # ----------------------------------------- ''' def __init__(self, opt): super(DatasetMaskedDenoising, self).__init__() self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.sf = opt['scale'] if opt['scale'] else 1 self.lq_patchsize = self.opt['lq_patchsize'] if self.opt['lq_patchsize'] else 64 self.patch_size = self.opt['H_size'] if self.opt['H_size'] else self.lq_patchsize*self.sf self.paths_H = util.get_image_paths(opt['dataroot_H']) print(f'len(self.paths_H): {len(self.paths_H)}') assert self.paths_H, 'Error: H path is empty.' self.if_mask = True if opt['if_mask'] else False def __getitem__(self, index): L_path = None # ------------------------------------ # get H image # ------------------------------------ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) img_name, ext = os.path.splitext(os.path.basename(H_path)) H, W, C = img_H.shape if H < self.patch_size or W < self.patch_size: img_H = np.tile(np.random.randint(0, 256, size=[1, 1, self.n_channels], dtype=np.uint8), (self.patch_size, self.patch_size, 1)) # ------------------------------------ # if train, get L/H patch pair # ------------------------------------ if self.opt['phase'] == 'train': H, W, C = img_H.shape rnd_h_H = random.randint(0, max(0, H - self.patch_size)) rnd_w_H = random.randint(0, max(0, W - self.patch_size)) img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :] mode = random.randint(0, 7) img_H = util.augment_img(img_H, mode=mode) img_H = util.uint2single(img_H) img_L, img_H = utils_mask.input_mask_with_noise(img_H, sf=self.sf, lq_patchsize=self.lq_patchsize, noise_level=self.opt['noise_level'], if_mask=self.if_mask, mask1=self.opt['mask1'], mask2=self.opt['mask2']) else: img_H = util.uint2single(img_H) img_L, img_H = utils_mask.input_mask_with_noise(img_H, self.sf, lq_patchsize=self.lq_patchsize) # ------------------------------------ # L/H pairs, HWC to CHW, numpy to tensor # ------------------------------------ img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) if L_path is None: L_path = H_path return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)