""" Copyright (C) 2024 AIDC-AI Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch from typing import List, Dict, Tuple from transformers import AutoModelForCausalLM, AutoTokenizer def load_model_and_tokenizer(path): tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(path, trust_remote_code=True).to('cuda:0') model.eval() return tokenizer, model def generate_response(model, tokenizer, input_ids, attention_mask, max_new_tokens=4096): generated_ids = input_ids with torch.inference_mode(): for _ in range(max_new_tokens): outputs = model(input_ids=generated_ids, attention_mask=attention_mask) next_token_id = torch.argmax(outputs.logits[:, -1, :], dim=-1).unsqueeze(-1) generated_ids = torch.cat([generated_ids, next_token_id], dim=-1) attention_mask = torch.cat([attention_mask, torch.ones_like(next_token_id)], dim=-1) new_token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True) print(new_token, end='', flush=True) if next_token_id.item() == tokenizer.eos_token_id: break return tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) def chat(model, tokenizer): history: List[Dict[str, str]] = [] print("Enter 'q' to quit, 'c' to clear chat history.") while True: user_input = input("User: ").strip().lower() if user_input == 'q': print("Exiting chat.") break if user_input == 'c': print("Clearing chat history.") history.clear() continue if not user_input: print("Input cannot be empty.") continue history.append({"role": "user", "content": user_input}) text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=4096).to('cuda:0') print('Assistant:', end=' ', flush=True) response = generate_response(model, tokenizer, model_inputs.input_ids, model_inputs.attention_mask) print() history.append({"role": "assistant", "content": response}) def main(): path = "AIDC-AI/Marco-o1" tokenizer, model = load_model_and_tokenizer(path) print('Starting chat.') chat(model, tokenizer) if __name__ == "__main__": main()