import onnxruntime as ort import cv2 import numpy as np import argparse import os import time print('Runing Based On:', ort.get_device()) CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑', '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤', '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'I', 'O', '-' ] def LPRNetPreprocess(image): img = cv2.imread(image) img = cv2.resize(img, (94, 24)).astype('float32') img -= 127.5 img *= 0.0078125 img = np.expand_dims(img.transpose(2, 0, 1), 0) return img def LPRNetPostprocess(infer_res): preb_label = [] for j in range(infer_res.shape[1]): preb_label.append(np.argmax(infer_res[:, j], axis=0)) no_repeat_blank_label = [] pre_c = preb_label[0] if pre_c != len(CHARS) - 1: no_repeat_blank_label.append(pre_c) for c in preb_label: # dropout repeate label and blank label if (pre_c == c) or (c == len(CHARS) - 1): if c == len(CHARS) - 1: pre_c = c continue no_repeat_blank_label.append(c) pre_c = c result = ''.join(list(map(lambda x: CHARS[x], no_repeat_blank_label))) return result def LPRNetInference(args): if ort.get_device() == "GPU-MIGRAPHX": sess = ort.InferenceSession(args.model, providers=['ROCMExecutionProvider'],) #DCU版本 else: sess = ort.InferenceSession(args.model, providers=['CPUExecutionProvider']) # CPU版本 if os.path.isdir(args.imgpath): images = os.listdir(args.imgpath) count = 0 time1 = time.perf_counter() for image in images: img = LPRNetPreprocess(os.path.join(args.imgpath, image)) intput = sess.get_inputs()[0].shape preb = sess.run(None, input_feed={sess.get_inputs()[0].name: img})[0] result = LPRNetPostprocess(preb) if result == image[:-4]: count += 1 print('Inference Result:', result) time2 = time.perf_counter() print('accuracy rate:', count / len(images)) print('average time', (time2 - time1)/count*1000) else: img = LPRNetPreprocess(args.imgpath) intput = sess.get_inputs()[0].shape preb = sess.run(None, input_feed={sess.get_inputs()[0].name: img})[0] result = LPRNetPostprocess(preb) print('Inference Result:', result) if __name__ == '__main__': parser = argparse.ArgumentParser(description='parameters to vaildate net') parser.add_argument('--model', default='model/LPRNet.onnx', help='model path to vaildate') parser.add_argument('--imgpath', default='imgs', help='the image path') args = parser.parse_args() LPRNetInference(args)