#!/bin/bash -l SCRIPTPATH=$(dirname $(readlink -f "$0")) PROJECT_DIR="${SCRIPTPATH}/../../" # conda activate loftr export PYTHONPATH=$PROJECT_DIR:$PYTHONPATH cd $PROJECT_DIR data_cfg_path="configs/data/scannet_trainval.py" main_cfg_path="configs/loftr/indoor/loftr_ds_dense.py" n_nodes=1 n_gpus_per_node=4 torch_num_workers=4 batch_size=1 pin_memory=true exp_name="indoor-ds-bs=$(($n_gpus_per_node * $n_nodes * $batch_size))" python -u ./train.py \ ${data_cfg_path} \ ${main_cfg_path} \ --exp_name=${exp_name} \ --gpus=${n_gpus_per_node} --num_nodes=${n_nodes} --accelerator="ddp" \ --batch_size=${batch_size} --num_workers=${torch_num_workers} --pin_memory=${pin_memory} \ --check_val_every_n_epoch=1 \ --log_every_n_steps=100 \ --flush_logs_every_n_steps=100 \ --limit_val_batches=1. \ --num_sanity_val_steps=10 \ --benchmark=True \ --max_epochs=30 \ --parallel_load_data