export OMP_NUM_THREADS=8 export NCCL_IB_DISABLE=0 export NCCL_IB_GID_INDEX=3 export NCCL_SOCKET_IFNAME=eth0 export NCCL_DEBUG=INFO LLM_VERSION="Qwen/Qwen2-7B-Instruct" LLM_VERSION_CLEAN="${LLM_VERSION//\//_}" VISION_MODEL_VERSION="openai/clip-vit-large-patch14-336" VISION_MODEL_VERSION_CLEAN="${VISION_MODEL_VERSION//\//_}" ############### Pretrain ################ PROMPT_VERSION=plain BASE_RUN_NAME="llavanext-${VISION_MODEL_VERSION_CLEAN}-${LLM_VERSION_CLEAN}-mlp2x_gelu-pretrain_blip558k_plain" echo "BASE_RUN_NAME: ${BASE_RUN_NAME}" ACCELERATE_CPU_AFFINITY=1 torchrun --nproc_per_node="${NUM_GPUS}" --nnodes="${NNODES}" --node_rank="${RANK}" --master_addr="${ADDR}" --master_port="${PORT}" \ llava/train/train_mem.py \ --deepspeed scripts/zero3.json \ --model_name_or_path ${LLM_VERSION} \ --version ${PROMPT_VERSION} \ --data_path /blip_558k/blip_558k_plain.json \ --image_folder /blip_558k/images \ --vision_tower ${VISION_MODEL_VERSION} \ --mm_tunable_parts="mm_mlp_adapter" \ --mm_vision_select_layer -2 \ --mm_projector_type mlp2x_gelu \ --mm_use_im_start_end False \ --mm_use_im_patch_token False \ --bf16 True \ --output_dir /checkpoints/projectors/${BASE_RUN_NAME} \ --num_train_epochs 1 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 4 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "no" \ --save_steps 50000 \ --learning_rate 1e-3 \ --weight_decay 0. \ --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 8192 \ --gradient_checkpointing True \ --dataloader_num_workers 16 \ --lazy_preprocess True \ --report_to wandb \ --run_name $BASE_RUN_NAME \ --attn_implementation sdpa # You can delete the sdpa attn_implementation if you want to use flash attn