from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch from pathlib import Path import os current_dir = str(Path(__file__).resolve().parent) pretrained = os.path.join(current_dir, "ckpts", "llama3-llava-next-8b") model_name = "llava_llama3" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args model.eval() model.tie_weights() image = Image.open("./examples/llava_v1_5_radar.jpg") image_tensor = process_images([image], image_processor, model.config) image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] conv_template = "llava_llama_3" # Make sure you use correct chat template for different models question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?" conv = copy.deepcopy(conv_templates[conv_template]) conv.tokenizer = tokenizer conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) image_sizes = [image.size] cont = model.generate( input_ids, images=image_tensor, image_sizes=image_sizes, do_sample=False, temperature=0, max_new_tokens=256, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) print(text_outputs)