from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch import sys import warnings warnings.filterwarnings("ignore") pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si" model_name = "llava_qwen" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args model.eval() url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) image_tensor = process_images([image], image_processor, model.config) image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] conv_template = "qwen_1_5" # Make sure you use correct chat template for different models question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?" conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) image_sizes = [image.size] cont = model.generate( input_ids, images=image_tensor, image_sizes=image_sizes, do_sample=False, temperature=0, max_new_tokens=4096, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) print(text_outputs) from threading import Thread from transformers import TextIteratorStreamer import json url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) image_tensor = process_images([image], image_processor, model.config) image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] conv_template = "qwen_1_5" question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?" conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) image_sizes = [image.size] max_context_length = getattr(model.config, "max_position_embeddings", 2048) num_image_tokens = question.count(DEFAULT_IMAGE_TOKEN) * model.get_vision_tower().num_patches streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) max_new_tokens = min(4096, max_context_length - input_ids.shape[-1] - num_image_tokens) if max_new_tokens < 1: print( json.dumps( { "text": question + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0, } ) ) else: gen_kwargs = { "do_sample": False, "temperature": 0, "max_new_tokens": max_new_tokens, "images": image_tensor, "image_sizes": image_sizes, } thread = Thread( target=model.generate, kwargs=dict( inputs=input_ids, streamer=streamer, **gen_kwargs, ), ) thread.start() generated_text = "" for new_text in streamer: generated_text += new_text sys.stdout.write(new_text) sys.stdout.flush() print("\nFinal output:", generated_text)