# LLaVA Video ## Table of Contents 1. [Model Summary](##model-summary) 2. [Inference](##inference) 3. [Training](##training) 4. [Evaluation](##evaluation-guidance) 6. [Citation](##citation) ## Model Summary The LLaVA-Video models are 7/72B parameter models trained on [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K) and [LLaVA-OneVision Dataset](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), based on Qwen2 language model with a context window of 32K tokens. ## Inference We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/LLaVA-VL/LLaVA-NeXT). ```python # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch import sys import warnings from decord import VideoReader, cpu import numpy as np warnings.filterwarnings("ignore") def load_video(self, video_path, max_frames_num,fps=1,force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) total_frame_num = len(vr) video_time = total_frame_num / vr.get_avg_fps() fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/fps for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() # import pdb;pdb.set_trace() return spare_frames,frame_time,video_time pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2" model_name = "llava_qwen" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args model.eval() video_path = "XXXX" max_frames_num = "64" video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16() video = [video] conv_template = "qwen_1_5" # Make sure you use correct chat template for different models time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video." question = DEFAULT_IMAGE_TOKEN + f"{time_instruciton}\nPlease describe this video in detail." conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) cont = model.generate( input_ids, images=video, modalities= ["video"], do_sample=False, temperature=0, max_new_tokens=4096, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip() print(text_outputs) ``` ## Data Preparation 1. **Download LLaVA-OneVision** Refer to the official instructions here: [LLaVA-OneVision Data](https://github.com/LLaVA-VL/LLaVA-NeXT/tree/main/scripts/train#about-the-llava-onevision-data). Make sure to follow the guidelines provided to obtain and organize the data correctly. 2. **Download LLaVA-Video-178K** The dataset is available on Hugging Face: [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K). After downloading, place it in your desired directory. 3. **Update `exp.yaml`** In the [`exp.yaml` file](https://github.com/LLaVA-VL/LLaVA-NeXT/blob/main/scripts/video/train/exp.yaml), update the file paths to point to the directories where you stored the datasets: - **Line 186-Line 263**: Specify the path for the LLaVA-Video-178K dataset. - For other data references, update them to point to your local LLaVA-OneVision data directory. ## Training [[Scripts]](https://github.com/LLaVA-VL/LLaVA-NeXT/blob/yhzhang/video_dev/scripts/video/train/SO400M_Qwen2_72B_ov_to_video_am9_aug6.sh): Start training models on your single-image/multi-image/video data. ## Evaluation Guidance We use the [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) toolkit to evaluate our models. Ensure you have installed the LLaVA-NeXT model files as per the instructions in the main README.md. Install lmms-eval: > pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git ### Reproducing Evaluation Results Our models' evaluation results can be fully reproduced using the lmms-eval toolkit. After installing lmms-eval and llava, you can run the evaluation using the following commands. Note: These commands require flash-attn. If you prefer not to install it, disable flash-attn by adding `attn_implementation=None` to the `--model_args` parameter. Important: Different torch versions may cause slight variations in results. By default in `lmms-eval`, the requirement for torch version is set to the latest version. In `llava` repo, the torch version is set to `2.1.2`. Torch version `2.1.2` would be stable for both `llava` and `lmms-eval` ### Evaluating LLaVA-Video on multiple datasets We recommend the developers and researchers to thoroughly evaluate the models on more datasets to get a comprehensive understanding of their performance in different scenarios. So we provide a comprehensive list of datasets for evaluation, and welcome to incoporate more evaluation tasks. Please refer to the [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval) for more details. ```bash # video tasks accelerate launch --num_processes=8 \ -m lmms_eval \ --model llava_vid \ --model_args pretrained=lmms-lab/LLaVA-Video-7B-Qwen2,conv_template=qwen_1_5,max_frames_num=64,mm_spatial_pool_mode=average \ --tasks activitynetqa,videochatgpt,nextqa_mc_test,egoschema,video_dc499,videmme,videomme_w_subtitle,perceptiontest_val_mc \ --batch_size 1 \ --log_samples \ --log_samples_suffix llava_vid \ --output_path ./logs/ ```