# LLAMA ## 论文 - [https://arxiv.org/pdf/2302.13971.pdf](https://arxiv.org/pdf/2302.13971.pdf) ## 模型结构 LLAMA网络基于 Transformer 架构。提出了各种改进,并用于不同的模型,例如 PaLM。以下是与原始架构的主要区别: 预归一化。为了提高训练稳定性,对每个transformer 子层的输入进行归一化,而不是对输出进行归一化。使用 RMSNorm 归一化函数。 SwiGLU 激活函数 [PaLM]。使用 SwiGLU 激活函数替换 ReLU 非线性以提高性能。使用 2 /3 4d 的维度而不是 PaLM 中的 4d。 旋转嵌入。移除了绝对位置嵌入,而是添加了旋转位置嵌入 (RoPE),在网络的每一层。 ![img](./docs/llama_str.png) ## 算法原理 LLama是一个基础语言模型的集合,参数范围从7B到65B。在数万亿的tokens上训练出的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而不依赖于专有的和不可访问的数据集。 ![img](./docs/llama_pri.png) ## 环境配置 ### Docker(方法一) 提供[光源](https://www.sourcefind.cn/#/image/dcu/custom)拉取推理的docker镜像: ``` docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310 # 用上面拉取docker镜像的ID替换 # 主机端路径 # 容器映射路径 docker run -it --name qwen1.5_vllm --privileged --shm-size=64G --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v : /bin/bash # 更新镜像的ray版本和服务依赖 pip install ray==2.9.1 aiohttp==3.9.1 outlines==0.0.37 openai==1.23.3 ``` ### Dockerfile(方法二) ``` # 主机端路径 # 容器映射路径 docker build -t llama:latest . docker run -it --name llama_vllm --privileged --shm-size=64G --device=/dev/kfd --device=/dev/dri/ --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /opt/hyhal:/opt/hyhal -v : llama:latest /bin/bash ``` ### Anaconda(方法三) ``` conda create -n llama_vllm python=3.10 pip install ray==2.9.1 aiohttp==3.9.1 outlines==0.0.37 openai==1.23.3 ``` 关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。 * DTK驱动:dtk24.04 * Pytorch: 2.1.0 * triton:2.1.0 * vllm: 0.3.3 * xformers: 0.0.25 * flash_attn: 2.0.4 * python: python3.10 `Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应.目前只能在K100_AI上使用` ## 数据集 无 ## 推理 ### 源码编译安装 ``` # 若使用光源的镜像,可以跳过源码编译安装,镜像中已安装vllm。 git clone http://developer.hpccube.com/codes/modelzoo/llama_vllm.git cd llama_vllm git submodule init && git submodule update cd vllm pip install wheel python setup.py bdist_wheel cd dist && pip install vllm* ``` ### 模型下载 | 基座模型 | chat模型 | GPTQ模型 | | ------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- | | [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [Llama-2-7B-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GPTQ/tree/gptq-4bit-128g-actorder_True) | | [Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) | [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) | [Llama-2-13B-GPTQ](https://huggingface.co/TheBloke/Llama-2-13B-GPTQ/tree/gptq-4bit-128g-actorder_True) | | [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | [Llama-2-70B-Chat-GPTQ](https://huggingface.co/TheBloke/Llama-2-70B-Chat-GPTQ/tree/gptq-4bit-128g-actorder_True) | | [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | | [Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) | [Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) | ### 离线批量推理 ```bash python vllm/examples/offline_inference.py ``` 其中,`prompts`为提示词;`temperature`为控制采样随机性的值,值越小模型生成越确定,值变高模型生成更随机,0表示贪婪采样,默认为1;`max_tokens=16`为生成长度,默认为1; `model`为模型路径;`tensor_parallel_size=1`为使用卡数,默认为1;`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理,`quantization="gptq"`为使用gptq量化进行推理,需下载以上GPTQ模型。 ### 离线批量推理性能测试 1、指定输入输出 ```bash python vllm/benchmarks/benchmark_throughput.py --num-prompts 1 --input-len 32 --output-len 128 --model meta-llama/Llama-2-7b-chat-hf -tp 1 --trust-remote-code --enforce-eager --dtype float16 ``` 其中`--num-prompts`是batch数,`--input-len`是输入seqlen,`--output-len`是输出token长度,`--model`为模型路径,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。若指定`--output-len 1`即为首字延迟。`-q gptq`为使用gptq量化模型进行推理。 2、使用数据集 下载数据集: ```bash wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` ```bash python vllm/benchmarks/benchmark_throughput.py --num-prompts 1 --model meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json -tp 1 --trust-remote-code --enforce-eager --dtype float16 ``` 其中`--num-prompts`是batch数,`--model`为模型路径,`--dataset`为使用的数据集,`-tp`为使用卡数,`dtype="float16"`为推理数据类型,如果模型权重是bfloat16,需要修改为float16推理。`-q gptq`为使用gptq量化模型进行推理。 ### api服务推理性能测试 1、启动服务端: ```bash python -m vllm.entrypoints.api_server --model meta-llama/Llama-2-7b-chat-hf --dtype float16 --enforce-eager -tp 1 ``` 2、启动客户端: ```bash python vllm/benchmarks/benchmark_serving.py --model meta-llama/Llama-2-7b-chat-hf --dataset ShareGPT_V3_unfiltered_cleaned_split.json --num-prompts 1 --trust-remote-code ``` 参数同使用数据集,离线批量推理性能测试,具体参考[vllm/benchmarks/benchmark_serving.py] ### OpenAI兼容服务 启动服务: ```bash python -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf --enforce-eager --dtype float16 --trust-remote-code ``` 这里`--model`为加载模型路径,`--dtype`为数据类型:float16,默认情况使用tokenizer中的预定义聊天模板,`--chat-template`可以添加新模板覆盖默认模板,`-q gptq`为使用gptq量化模型进行推理。 列出模型型号: ```bash curl http://localhost:8000/v1/models ``` ### OpenAI Completions API和vllm结合使用 ```bash curl http://localhost:8000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "meta-llama/Llama-2-7b-hf", "prompt": "I believe the meaning of life is", "max_tokens": 7, "temperature": 0 }' ``` 或者使用[vllm/examples/openai_completion_client.py](https://developer.hpccube.com/codes/OpenDAS/vllm/-/blob/675c0abe47eb9d29c126fbecda86fd5801162eba/examples/openai_completion_client.py) ### OpenAI Chat API和vllm结合使用 ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "meta-llama/Llama-2-7b-chat-hf", "messages": [ {"role": "system", "content": "I believe the meaning of life is"}, {"role": "user", "content": "I believe the meaning of life is"} ] }' ``` 或者使用[vllm/examples/openai_chatcompletion_client.py](https://developer.hpccube.com/codes/OpenDAS/vllm/-/blob/675c0abe47eb9d29c126fbecda86fd5801162eba/examples/openai_chatcompletion_client.py) ## result 使用的加速卡:1张 DCU-K100_AI-64G ``` Prompt: 'I believe the meaning of life is', Generated text: ' to find purpose, happiness, and fulfillment. Here are some reasons why:\n\n1. Purpose: Having a sense of purpose gives life meaning and direction. It helps individuals set goals and work towards achieving them, which can lead to a sense of accomplishment and fulfillment.\n2. Happiness: Happiness is a fundamental aspect of life that brings joy and satisfaction. ``` ### 精度 无 ## 应用场景 ### 算法类别 对话问答 ### 热点应用行业 金融,科研,教育 ## 源码仓库及问题反馈 * [https://developer.hpccube.com/codes/modelzoo/llama_vllm](https://developer.hpccube.com/codes/modelzoo/llama_vllm) ## 参考资料 * [https://github.com/vllm-project/vllm](https://github.com/vllm-project/vllm)