Commit 66dadd2d authored by zhuwenwen's avatar zhuwenwen
Browse files

update vllm0.5.0

parent cad75589
from vllm.sampling_params import SamplingParams
from vllm.engine.async_llm_engine import AsyncEngineArgs, AsyncLLMEngine
import asyncio
from vllm.utils import FlexibleArgumentParser
from transformers import AutoTokenizer
import logging
import argparse
import sys
vllm_logger = logging.getLogger("vllm")
vllm_logger.setLevel(logging.WARNING)
class FlexibleArgumentParser(argparse.ArgumentParser):
"""ArgumentParser that allows both underscore and dash in names."""
def parse_args(self, args=None, namespace=None):
if args is None:
args = sys.argv[1:]
# Convert underscores to dashes and vice versa in argument names
processed_args = []
for arg in args:
if arg.startswith('--'):
if '=' in arg:
key, value = arg.split('=', 1)
key = '--' + key[len('--'):].replace('_', '-')
processed_args.append(f'{key}={value}')
else:
processed_args.append('--' +
arg[len('--'):].replace('_', '-'))
else:
processed_args.append(arg)
return super().parse_args(processed_args, namespace)
parser = FlexibleArgumentParser()
parser.add_argument('--template', type=str, help="Path to template")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
# chat = [
# {"role": "user", "content": "Hello, how are you?"},
# {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
# {"role": "user", "content": "I'd like to show off how chat templating works!"},
# ]
tokenizer = AutoTokenizer.from_pretrained(args.model)
try:
f = open(args.template,'r')
tokenizer.chat_template = f.read()
except Exception as e:
print('except:',e)
finally:
f.close()
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(engine_args)
model_name = args.model.split("/")[-1] if args.model.split("/")[-1] !="" else args.model.split("/")[-2]
print(f"欢迎使用{model_name}模型,输入内容即可进行对话,stop 终止程序")
def build_prompt(history):
prompt = ""
for query, response in history:
prompt += f"\n\n用户:{query}"
prompt += f"\n\n{model_name}:{response}"
return prompt
history = []
while True:
query = input("\n用户:")
if query.strip() == "stop":
break
history.append({"role": "user", "content": query})
new_query = tokenizer.apply_chat_template(history, tokenize=False)
example_input = {
"prompt": new_query,
"stream": False,
"temperature": 0.0,
"request_id": 0,
}
results_generator = engine.generate(
example_input["prompt"],
SamplingParams(temperature=example_input["temperature"], max_tokens=100),
example_input["request_id"]
)
start = 0
end = 0
response = ""
async def process_results():
async for output in results_generator:
global end
global start
global response
print(output.outputs[0].text[start:], end="", flush=True)
length = len(output.outputs[0].text)
start = length
response = output.outputs[0].text
asyncio.run(process_results())
history.append({"role": "assistant", "content": response})
print()
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
chat_completion = client.chat.completions.create(
messages=[{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "Who won the world series in 2020?"
}, {
"role":
"assistant",
"content":
"The Los Angeles Dodgers won the World Series in 2020."
}, {
"role": "user",
"content": "Where was it played?"
}],
model=model,
)
print("Chat completion results:")
print(chat_completion)
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Completion API
stream = False
completion = client.completions.create(
model=model,
prompt="A robot may not injure a human being",
echo=False,
n=2,
stream=stream,
logprobs=3)
print("Completion results:")
if stream:
for c in completion:
print(c)
else:
print(completion)
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
responses = client.embeddings.create(input=[
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
],
model=model)
for data in responses.data:
print(data.embedding) # list of float of len 4096
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
# vLLM + Prometheus/Grafana
This is a simple example that shows you how to connect vLLM metric logging to the Prometheus/Grafana stack. For this example, we launch Prometheus and Grafana via Docker. You can checkout other methods through [Prometheus](https://prometheus.io/) and [Grafana](https://grafana.com/) websites.
Install:
- [`docker`](https://docs.docker.com/engine/install/)
- [`docker compose`](https://docs.docker.com/compose/install/linux/#install-using-the-repository)
### Launch
Prometheus metric logging is enabled by default in the OpenAI-compatible server. Launch via the entrypoint:
```bash
python3 -m vllm.entrypoints.openai.api_server \
--model mistralai/Mistral-7B-v0.1 \
--max-model-len 2048 \
--disable-log-requests
```
Launch Prometheus and Grafana servers with `docker compose`:
```bash
docker compose up
```
Submit some sample requests to the server:
```bash
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 ../../benchmarks/benchmark_serving.py \
--model mistralai/Mistral-7B-v0.1 \
--tokenizer mistralai/Mistral-7B-v0.1 \
--endpoint /v1/completions \
--dataset-name sharegpt \
--dataset-path ShareGPT_V3_unfiltered_cleaned_split.json \
--request-rate 3.0
```
Navigating to [`http://localhost:8000/metrics`](http://localhost:8000/metrics) will show the raw Prometheus metrics being exposed by vLLM.
### Grafana Dashboard
Navigate to [`http://localhost:3000`](http://localhost:3000). Log in with the default username (`admin`) and password (`admin`).
#### Add Prometheus Data Source
Navigate to [`http://localhost:3000/connections/datasources/new`](http://localhost:3000/connections/datasources/new) and select Prometheus.
On Prometheus configuration page, we need to add the `Prometheus Server URL` in `Connection`. For this setup, Grafana and Prometheus are running in separate containers, but Docker creates DNS name for each containers. You can just use `http://prometheus:9090`.
Click `Save & Test`. You should get a green check saying "Successfully queried the Prometheus API.".
#### Import Dashboard
Navigate to [`http://localhost:3000/dashboard/import`](http://localhost:3000/dashboard/import), upload `grafana.json`, and select the `prometheus` datasource. You should see a screen that looks like the following:
![Grafana Dashboard Image](https://i.imgur.com/R2vH9VW.png)
# docker-compose.yaml
version: "3"
services:
prometheus:
image: prom/prometheus:latest
extra_hosts:
- "host.docker.internal:host-gateway" # allow a direct connection from container to the local machine
ports:
- "9090:9090" # the default port used by Prometheus
volumes:
- ${PWD}/prometheus.yaml:/etc/prometheus/prometheus.yml # mount Prometheus config file
grafana:
image: grafana/grafana:latest
depends_on:
- prometheus
ports:
- "3000:3000" # the default port used by Grafana
{
"__inputs": [
{
"name": "DS_PROMETHEUS",
"label": "prometheus",
"description": "",
"type": "datasource",
"pluginId": "prometheus",
"pluginName": "Prometheus"
}
],
"__elements": {},
"__requires": [
{
"type": "grafana",
"id": "grafana",
"name": "Grafana",
"version": "10.4.2"
},
{
"type": "panel",
"id": "heatmap",
"name": "Heatmap",
"version": ""
},
{
"type": "datasource",
"id": "prometheus",
"name": "Prometheus",
"version": "1.0.0"
},
{
"type": "panel",
"id": "timeseries",
"name": "Time series",
"version": ""
}
],
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"target": {
"limit": 100,
"matchAny": false,
"tags": [],
"type": "dashboard"
},
"type": "dashboard"
}
]
},
"description": "Monitoring vLLM Inference Server",
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": null,
"links": [],
"liveNow": false,
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "End to end request latency measured in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 0
},
"id": 9,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:e2e_request_latency_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:e2e_request_latency_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "E2E Request Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of tokens processed per second",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 0
},
"id": 8,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:prompt_tokens_total{model_name=\"$model_name\"}[$__rate_interval])",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Prompt Tokens/Sec",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "rate(vllm:generation_tokens_total{model_name=\"$model_name\"}[$__rate_interval])",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "Generation Tokens/Sec",
"range": true,
"refId": "B",
"useBackend": false
}
],
"title": "Token Throughput",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Inter token latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 10,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_per_output_token_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:time_per_output_token_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Mean",
"range": true,
"refId": "E"
}
],
"title": "Time Per Output Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of requests in RUNNING, WAITING, and SWAPPED state",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "none"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
},
"id": 3,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_running{model_name=\"$model_name\"}",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Running",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_swapped{model_name=\"$model_name\"}",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Swapped",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "vllm:num_requests_waiting{model_name=\"$model_name\"}",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "Num Waiting",
"range": true,
"refId": "C",
"useBackend": false
}
],
"title": "Scheduler State",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "P50, P90, P95, and P99 TTFT latency in seconds.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "s"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 5,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P99",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P95",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P90",
"range": true,
"refId": "C",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket{model_name=\"$model_name\"}[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "P50",
"range": true,
"refId": "D",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "rate(vllm:time_to_first_token_seconds_sum{model_name=\"$model_name\"}[$__rate_interval])\n/\nrate(vllm:time_to_first_token_seconds_count{model_name=\"$model_name\"}[$__rate_interval])",
"hide": false,
"instant": false,
"legendFormat": "Average",
"range": true,
"refId": "E"
}
],
"title": "Time To First Token Latency",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Percentage of used cache blocks by vLLM.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
},
"unit": "percentunit"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 4,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:gpu_cache_usage_perc{model_name=\"$model_name\"}",
"instant": false,
"legendFormat": "GPU Cache Usage",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"editorMode": "code",
"expr": "vllm:cpu_cache_usage_perc{model_name=\"$model_name\"}",
"hide": false,
"instant": false,
"legendFormat": "CPU Cache Usage",
"range": true,
"refId": "B"
}
],
"title": "Cache Utilization",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Heatmap of request prompt length",
"fieldConfig": {
"defaults": {
"custom": {
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"scaleDistribution": {
"type": "linear"
}
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 24
},
"id": 12,
"options": {
"calculate": false,
"cellGap": 1,
"cellValues": {
"unit": "none"
},
"color": {
"exponent": 0.5,
"fill": "dark-orange",
"min": 0,
"mode": "scheme",
"reverse": false,
"scale": "exponential",
"scheme": "Spectral",
"steps": 64
},
"exemplars": {
"color": "rgba(255,0,255,0.7)"
},
"filterValues": {
"le": 1e-9
},
"legend": {
"show": true
},
"rowsFrame": {
"layout": "auto",
"value": "Request count"
},
"tooltip": {
"mode": "single",
"showColorScale": false,
"yHistogram": true
},
"yAxis": {
"axisLabel": "Prompt Length",
"axisPlacement": "left",
"reverse": false,
"unit": "none"
}
},
"pluginVersion": "10.4.2",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "sum by(le) (increase(vllm:request_prompt_tokens_bucket{model_name=\"$model_name\"}[$__rate_interval]))",
"format": "heatmap",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "{{le}}",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Request Prompt Length",
"type": "heatmap"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Heatmap of request generation length",
"fieldConfig": {
"defaults": {
"custom": {
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"scaleDistribution": {
"type": "linear"
}
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 24
},
"id": 13,
"options": {
"calculate": false,
"cellGap": 1,
"cellValues": {
"unit": "none"
},
"color": {
"exponent": 0.5,
"fill": "dark-orange",
"min": 0,
"mode": "scheme",
"reverse": false,
"scale": "exponential",
"scheme": "Spectral",
"steps": 64
},
"exemplars": {
"color": "rgba(255,0,255,0.7)"
},
"filterValues": {
"le": 1e-9
},
"legend": {
"show": true
},
"rowsFrame": {
"layout": "auto",
"value": "Request count"
},
"tooltip": {
"mode": "single",
"showColorScale": false,
"yHistogram": true
},
"yAxis": {
"axisLabel": "Generation Length",
"axisPlacement": "left",
"reverse": false,
"unit": "none"
}
},
"pluginVersion": "10.4.2",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "sum by(le) (increase(vllm:request_generation_tokens_bucket{model_name=\"$model_name\"}[$__rate_interval]))",
"format": "heatmap",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "{{le}}",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Request Generation Length",
"type": "heatmap"
},
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"description": "Number of finished requests by their finish reason: either an EOS token was generated or the max sequence length was reached.",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green",
"value": null
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 32
},
"id": 11,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"mode": "single",
"sort": "none"
}
},
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "sum by(finished_reason) (increase(vllm:request_success_total{model_name=\"$model_name\"}[$__rate_interval]))",
"fullMetaSearch": false,
"includeNullMetadata": true,
"instant": false,
"interval": "",
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Finish Reason",
"type": "timeseries"
}
],
"refresh": "",
"schemaVersion": 39,
"tags": [],
"templating": {
"list": [
{
"current": {},
"datasource": {
"type": "prometheus",
"uid": "${DS_PROMETHEUS}"
},
"definition": "label_values(model_name)",
"hide": 0,
"includeAll": false,
"label": "model_name",
"multi": false,
"name": "model_name",
"options": [],
"query": {
"query": "label_values(model_name)",
"refId": "StandardVariableQuery"
},
"refresh": 1,
"regex": "",
"skipUrlSync": false,
"sort": 0,
"type": "query"
}
]
},
"time": {
"from": "now-5m",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "vLLM",
"uid": "b281712d-8bff-41ef-9f3f-71ad43c05e9b",
"version": 1,
"weekStart": ""
}
# prometheus.yaml
global:
scrape_interval: 5s
evaluation_interval: 30s
scrape_configs:
- job_name: vllm
static_configs:
- targets:
- 'host.docker.internal:8000'
"""
Saves each worker's model state dict directly to a checkpoint, which enables a
fast load path for large tensor-parallel models where each worker only needs to
read its own shard rather than the entire checkpoint.
Example usage:
python save_sharded_state.py \
--model /path/to/load \
--quantization deepspeedfp \
--tensor-parallel-size 8 \
--output /path/to/save
Then, the model can be loaded with
llm = LLM(
model="/path/to/save",
load_format="sharded_state",
quantization="deepspeedfp",
tensor_parallel_size=8,
)
"""
import argparse
import dataclasses
import os
import shutil
from pathlib import Path
from vllm import LLM, EngineArgs
parser = argparse.ArgumentParser()
EngineArgs.add_cli_args(parser)
parser.add_argument("--output",
"-o",
required=True,
type=str,
help="path to output checkpoint")
parser.add_argument("--file-pattern",
type=str,
help="string pattern of saved filenames")
parser.add_argument("--max-file-size",
type=str,
default=5 * 1024**3,
help="max size (in bytes) of each safetensors file")
def main(args):
engine_args = EngineArgs.from_cli_args(args)
if engine_args.enable_lora:
raise ValueError("Saving with enable_lora=True is not supported!")
model_path = engine_args.model
if not Path(model_path).is_dir():
raise ValueError("model path must be a local directory")
# Create LLM instance from arguments
llm = LLM(**dataclasses.asdict(engine_args))
# Prepare output directory
Path(args.output).mkdir(exist_ok=True)
# Dump worker states to output directory
model_executor = llm.llm_engine.model_executor
model_executor.save_sharded_state(path=args.output,
pattern=args.file_pattern,
max_size=args.max_file_size)
# Copy metadata files to output directory
for file in os.listdir(model_path):
if os.path.splitext(file)[1] not in (".bin", ".pt", ".safetensors"):
if os.path.isdir(os.path.join(model_path, file)):
shutil.copytree(os.path.join(model_path, file),
os.path.join(args.output, file))
else:
shutil.copy(os.path.join(model_path, file), args.output)
if __name__ == "__main__":
args = parser.parse_args()
main(args)
{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}
{% for message in messages %}
{% if message['role'] == 'user' %}
### Instruction:
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% elif message['role'] == 'assistant' %}
### Response:
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% elif message['role'] == 'user_context' %}
### Input:
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% endif %}
{% endfor %}
{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}
### Response:
{% endif %}
\ No newline at end of file
{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
{{- '<reserved_106>' + message['content'] -}}
{%- elif message['role'] == 'assistant' -%}
{{- '<reserved_107>' + message['content'] -}}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt and messages[-1]['role'] != 'assistant' -%}
{{- '<reserved_107>' -}}
{% endif %}
\ No newline at end of file
{%- set counter = namespace(index=0) -%}
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
{{- '[Round ' + counter.index|string + ']\n问:' + message['content'] -}}
{%- set counter.index = counter.index + 1 -%}
{%- endif -%}
{%- if message['role'] == 'assistant' -%}
{{- '\n答:' + message['content'] -}}
{%- if (loop.last and add_generation_prompt) or not loop.last -%}
{{- '\n' -}}
{%- endif -%}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt and messages[-1]['role'] != 'assistant' -%}
{{- '\n答:' -}}
{%- endif -%}
\ No newline at end of file
{%- set counter = namespace(index=1) -%}
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
{{- '[Round ' + counter.index|string + ']\n\n问:' + message['content'] -}}
{%- set counter.index = counter.index + 1 -%}
{%- endif -%}
{%- if message['role'] == 'assistant' -%}
{{- '\n\n答:' + message['content'] -}}
{%- if (loop.last and add_generation_prompt) or not loop.last -%}
{{- '\n\n' -}}
{%- endif -%}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt and messages[-1]['role'] != 'assistant' -%}
{{- '\n\n答:' -}}
{%- endif -%}
\ No newline at end of file
{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\n'}}{% endif %}{% endfor %}
{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\n' }}{% endif %}
\ No newline at end of file
{%- for message in messages -%}
{%- if message['role'] == 'user' -%}
{{- 'User: ' + message['content'] -}}
{%- elif message['role'] == 'assistant' -%}
{{- 'Assistant: ' + message['content'] -}}
{%- endif -%}
{%- if (loop.last and add_generation_prompt) or not loop.last -%}
{{- '\n' -}}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt and messages[-1]['role'] != 'assistant' -%}
{{- 'Assistant:' -}}
{% endif %}
\ No newline at end of file
{%- for message in messages -%}
{%- if message['role'] == 'system' -%}
{{- 'System: ' + message['content'] -}}
{%- elif message['role'] == 'user' -%}
{{- 'User: ' + message['content'] -}}
{%- elif message['role'] == 'assistant' -%}
{{- 'Falcon: ' + message['content'] -}}
{%- endif -%}
{%- if (loop.last and add_generation_prompt) or not loop.last -%}
{{- '\n' -}}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt and messages[-1]['role'] != 'assistant' -%}
{{- 'Falcon:' -}}
{% endif %}
\ No newline at end of file
<#meta#>
- Date: {{ (messages|selectattr('role', 'equalto', 'meta-current_date')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'meta-current_date')|list) else '' }}
- Task: {{ (messages|selectattr('role', 'equalto', 'meta-task_name')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'meta-task_name')|list) else '' }}
<#system#>
{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}
<#chat#>
{% for message in messages %}
{% if message['role'] == 'user' %}
<#user#>
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% elif message['role'] == 'assistant' %}
<#bot#>
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% elif message['role'] == 'user_context' %}
<#user_context#>
{{ message['content']|trim -}}
{% if not loop.last %}
{% endif %}
{% endif %}
{% endfor %}
{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}
<#bot#>
{% endif %}
\ No newline at end of file
{% if messages[0]['role'] == 'system' %}
{% set system_message = '<<SYS>>\n' + messages[0]['content'] | trim + '\n<</SYS>>\n\n' %}
{% set messages = messages[1:] %}
{% else %}
{% set system_message = '' %}
{% endif %}
{% for message in messages %}
{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{% endif %}
{% if loop.index0 == 0 %}
{% set content = system_message + message['content'] %}
{% else %}
{% set content = message['content'] %}
{% endif %}
{% if message['role'] == 'user' %}
{{ bos_token + '[INST] ' + content | trim + ' [/INST]' }}
{% elif message['role'] == 'assistant' %}
{{ ' ' + content | trim + ' ' + eos_token }}
{% endif %}
{% endfor %}
\ No newline at end of file
{%- if messages[0]['role'] == 'system' -%}
{%- set system_message = messages[0]['content'] -%}
{%- set messages = messages[1:] -%}
{%- else -%}
{% set system_message = '' -%}
{%- endif -%}
{{ bos_token + system_message }}
{%- for message in messages -%}
{%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{%- endif -%}
{%- if message['role'] == 'user' -%}
{{ 'USER: ' + message['content'] + '\n' }}
{%- elif message['role'] == 'assistant' -%}
{{ 'ASSISTANT: ' + message['content'] + eos_token + '\n' }}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{ 'ASSISTANT:' }}
{% endif %}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment