Commit ea2d13c2 authored by zhaoying1's avatar zhaoying1
Browse files

added llama_tencentpretrain_pytorch

parents
Pipeline #548 failed with stages
in 0 seconds
{
"emb_size": 768,
"feedforward_size": 3072,
"hidden_size": 768,
"hidden_act": "gelu",
"heads_num": 12,
"layers_num": 12,
"dropout": 0.1,
"max_seq_length": 50,
"data_processor": "vit",
"embedding": ["patch", "pos"],
"remove_embedding_layernorm": true,
"encoder": "transformer",
"mask": "fully_visible",
"layernorm_positioning": "pre",
"target": ["cls"],
"image_height": 224,
"image_width": 224,
"patch_size": 32
}
\ No newline at end of file
{
"emb_size": 1280,
"feedforward_size": 5120,
"hidden_size": 1280,
"hidden_act": "gelu",
"heads_num": 16,
"layers_num": 32,
"dropout": 0.1,
"max_seq_length": 257,
"data_processor": "vit",
"embedding": ["patch", "pos"],
"remove_embedding_layernorm": true,
"encoder": "transformer",
"mask": "fully_visible",
"layernorm_positioning": "pre",
"target": ["cls"],
"image_height": 224,
"image_width": 224,
"patch_size": 14
}
\ No newline at end of file
{
"emb_size": 1024,
"feedforward_size": 4096,
"hidden_size": 1024,
"hidden_act": "gelu",
"heads_num": 16,
"layers_num": 24,
"dropout": 0.1,
"max_seq_length": 197,
"data_processor": "vit",
"embedding": ["patch", "pos"],
"remove_embedding_layernorm": true,
"encoder": "transformer",
"mask": "fully_visible",
"layernorm_positioning": "pre",
"target": ["cls"],
"image_height": 224,
"image_width": 224,
"patch_size": 16
}
\ No newline at end of file
{
"emb_size": 1024,
"feedforward_size": 4096,
"hidden_size": 1024,
"hidden_act": "gelu",
"heads_num": 16,
"layers_num": 24,
"dropout": 0.1,
"max_seq_length": 50,
"data_processor": "vit",
"embedding": ["patch", "pos"],
"remove_embedding_layernorm": true,
"encoder": "transformer",
"mask": "fully_visible",
"layernorm_positioning": "pre",
"target": ["cls"],
"image_height": 224,
"image_width": 224,
"patch_size": 32
}
\ No newline at end of file
{
"emb_size": 768,
"feedforward_size": 3072,
"hidden_size": 768,
"hidden_act": "gelu",
"heads_num": 12,
"layers_num": 12,
"max_seq_length": 514,
"dropout": 0.1,
"data_processor": "mlm",
"embedding": ["word", "pos", "seg"],
"encoder": "transformer",
"mask": "fully_visible",
"target": ["mlm"]
}
\ No newline at end of file
{
"emb_size": 1024,
"feedforward_size": 4096,
"hidden_size": 1024,
"hidden_act": "gelu",
"heads_num": 16,
"layers_num": 24,
"max_seq_length": 514,
"dropout": 0.1,
"data_processor": "mlm",
"embedding": ["word", "pos", "seg"],
"encoder": "transformer",
"mask": "fully_visible",
"target": ["mlm"]
}
\ No newline at end of file
{
"pad_token": "<pad>",
"unk_token": "<unk>",
"cls_token": "<s>",
"sep_token": "</s>",
"mask_token": "<mask>"
}
import argparse
import six
from packaging import version
from tencentpretrain.utils import *
from tencentpretrain.opts import *
assert version.parse(six.__version__) >= version.parse("1.12.0")
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--corpus_path", type=str, default="data/alpaca_gpt4_data_zh.json",
help="Path of the corpus for pretraining.")
parser.add_argument("--dataset_path", type=str, default="data/dataset.pt",
help="Path of the preprocessed dataset.")
parser.add_argument("--json_format_corpus", action="store_true",
help="Load from a json file corpus, like {\"text\": \"text\"}.")
# Preprocess options.
tokenizer_opts(parser)
tgt_tokenizer_opts(parser)
parser.add_argument("--processes_num", type=int, default=16,
help="Split the whole dataset into `processes_num` parts, "
"and process them with `processes_num` processes.")
parser.add_argument("--data_processor",
choices=["bert", "lm", "mlm", "bilm", "albert", "mt", "t5", "cls", "prefixlm",
"gsg", "bart", "cls_mlm", "vit", "vilt", "clip", "s2t", "beit", "dalle", "alpaca"], default="alpaca",
help="The data processor of the pretraining model.")
parser.add_argument("--docs_buffer_size", type=int, default=100000,
help="The buffer size of documents in memory, specific to targets that require negative sampling.")
parser.add_argument("--seq_length", type=int, default=1024, help="Sequence length of instances.")
parser.add_argument("--tgt_seq_length", type=int, default=128, help="Target sequence length of instances.")
parser.add_argument("--dup_factor", type=int, default=5,
help="Duplicate instances multiple times.")
parser.add_argument("--short_seq_prob", type=float, default=0.1,
help="Probability of truncating sequence."
"The larger value, the higher probability of using short (truncated) sequence.")
parser.add_argument("--full_sentences", action="store_true", help="Full sentences.")
parser.add_argument("--seed", type=int, default=7, help="Random seed.")
# Masking options.
parser.add_argument("--dynamic_masking", action="store_true", help="Dynamic masking.")
parser.add_argument("--whole_word_masking", action="store_true", help="Whole word masking.")
parser.add_argument("--span_masking", action="store_true", help="Span masking.")
parser.add_argument("--span_geo_prob", type=float, default=0.2,
help="Hyperparameter of geometric distribution for span masking.")
parser.add_argument("--span_max_length", type=int, default=10,
help="Max length for span masking.")
# Sentence selection strategy options.
parser.add_argument("--sentence_selection_strategy", choices=["lead", "random"], default="lead",
help="Sentence selection strategy for gap-sentences generation task.")
args = parser.parse_args()
# Dynamic masking.
if args.dynamic_masking:
args.dup_factor = 1
# Build tokenizer.
tokenizer = str2tokenizer[args.tokenizer](args)
if args.data_processor == "mt":
args.tgt_tokenizer = str2tokenizer[args.tgt_tokenizer](args, False)
# Build and save dataset.
dataset = str2dataset[args.data_processor](args, tokenizer.vocab, tokenizer)
dataset.build_and_save(args.processes_num)
if __name__ == "__main__":
main()
import argparse
import torch
import tencentpretrain.trainer as trainer
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.opts import *
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--dataset_path", type=str, default="data/dataset.pt",
help="Path of the preprocessed dataset.")
parser.add_argument("--pretrained_model_path", type=str, default=None,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", type=str, required=True,
help="Path of the output model.")
parser.add_argument("--config_path", type=str, default="models/llama/13b_config.json",
help="Config file of model hyper-parameters.")
# Training and saving options.
parser.add_argument("--total_steps", type=int, default=100000,
help="Total training steps.")
parser.add_argument("--save_checkpoint_steps", type=int, default=10000,
help="Specific steps to save model checkpoint.")
parser.add_argument("--report_steps", type=int, default=5,
help="Specific steps to print prompt.")
parser.add_argument("--accumulation_steps", type=int, default=1,
help="Specific steps to accumulate gradient.")
parser.add_argument("--batch_size", type=int, default=32,
help="Training batch size. The actual batch_size is [batch_size x world_size x accumulation_steps].")
parser.add_argument("--instances_buffer_size", type=int, default=25600,
help="The buffer size of instances in memory.")
parser.add_argument("--labels_num", type=int, required=False,
help="Number of prediction labels.")
parser.add_argument("--dropout", type=float, default=0.1, help="Dropout value.")
parser.add_argument("--seed", type=int, default=7, help="Random seed.")
# Preprocess options.
tokenizer_opts(parser)
tgt_tokenizer_opts(parser)
# Model options.
model_opts(parser)
parser.add_argument("--data_processor",
choices=["bert", "lm", "mlm", "bilm", "albert", "mt", "t5", "cls",
"prefixlm", "gsg", "bart", "cls_mlm", "vit", "vilt", "clip", "s2t", "beit", "dalle", "alpaca"], default="alpaca",
help="The data processor of the pretraining model.")
parser.add_argument("--deep_init", action="store_true",
help="Scaling initialization of projection layers by a "
"factor of 1/sqrt(2N). Necessary to large models.")
# Masking options.
parser.add_argument("--whole_word_masking", action="store_true", help="Whole word masking.")
parser.add_argument("--span_masking", action="store_true", help="Span masking.")
parser.add_argument("--span_geo_prob", type=float, default=0.2,
help="Hyperparameter of geometric distribution for span masking.")
parser.add_argument("--span_max_length", type=int, default=10,
help="Max length for span masking.")
# Optimizer options.
optimization_opts(parser)
# GPU options.
parser.add_argument("--world_size", type=int, default=1, help="Total number of processes (GPUs) for training.")
parser.add_argument("--gpu_ranks", default=[], nargs='+', type=int, help="List of ranks of each process."
" Each process has a unique integer rank whose value is in the interval [0, world_size), and runs in a single GPU.")
parser.add_argument("--master_ip", default="tcp://localhost:12345", type=str, help="IP-Port of master for training.")
parser.add_argument("--backend", choices=["nccl", "gloo"], default="nccl", type=str, help="Distributed backend.")
# Deepspeed options.
deepspeed_opts(parser)
# lora options.
lora_opts(parser)
# Log options.
log_opts(parser)
args = parser.parse_args()
# construct lora dict parameters.
if args.use_lora:
args.lora_params = {
"lora_r": args.lora_r,
"lora_alpha": args.lora_alpha,
"lora_dropout": args.lora_dropout
}
else:
args.lora_params = None
if "cls" in args.target:
assert args.labels_num is not None, "Cls target needs the denotation of the number of labels."
# Load hyper-parameters from config file.
if args.config_path:
args = load_hyperparam(args)
ranks_num = len(args.gpu_ranks)
if args.deepspeed:
if args.world_size > 1:
args.dist_train = True
else:
args.dist_train = False
else:
if args.world_size > 1:
# Multiprocessing distributed mode.
assert torch.cuda.is_available(), "No available GPUs."
assert ranks_num <= args.world_size, "Started processes exceed `world_size` upper limit."
assert ranks_num <= torch.cuda.device_count(), "Started processes exceeds the available GPUs."
args.dist_train = True
args.ranks_num = ranks_num
print("Using distributed mode for training.")
elif args.world_size == 1 and ranks_num == 1:
# Single GPU mode.
assert torch.cuda.is_available(), "No available GPUs."
args.gpu_id = args.gpu_ranks[0]
assert args.gpu_id < torch.cuda.device_count(), "Invalid specified GPU device."
args.dist_train = False
args.single_gpu = True
print("Using GPU %d for training." % args.gpu_id)
else:
# CPU mode.
assert ranks_num == 0, "GPUs are specified, please check the arguments."
args.dist_train = False
args.single_gpu = False
print("Using CPU mode for training.")
trainer.train_and_validate(args)
if __name__ == "__main__":
main()
import argparse
import sys
import os
import torch
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
def average(model_list_path):
for i, model_path in enumerate(model_list_path):
model = torch.load(model_path)
if i == 0:
avg_model = model
else:
for k, _ in avg_model.items():
avg_model[k].mul_(i).add_(model[k]).div_(i+1)
return avg_model
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="")
parser.add_argument("--model_list_path", nargs="+", required=True,
help="Path of the input model list.")
parser.add_argument("--output_model_path", required=True,
help="Path of the output model.")
args = parser.parse_args()
avg_model = average(args.model_list_path)
torch.save(avg_model, args.output_model_path)
上海有什么玩的?
\ No newline at end of file
"""
Build vocabulary with given tokenizer
"""
import sys
import os
import argparse
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils import *
from tencentpretrain.utils.vocab import Vocab
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--corpus_path", required=True)
parser.add_argument("--delimiter", choices=["char", "space"], required=True,
help="Tokenizing the corpus in char-level or by the provided spaces.")
parser.add_argument("--output_path", required=True,
help="The output path to save the vocabulary.")
parser.add_argument("--workers_num", type=int, default=1,
help="The number of processes to build vocabulary.")
parser.add_argument("--min_count", type=int, default=1,
help="The minimum count of words retained in the vocabulary.")
args = parser.parse_args()
# Build tokenizer only for char and space.
args.vocab_path, args.spm_model_path = "./models/reserved_vocab.txt", None
tokenizer = str2tokenizer[args.delimiter](args)
# Build and save vocabulary using CharTokenizer or SpaceTokenizer.
vocab = Vocab()
vocab.build(args.corpus_path, tokenizer, args.workers_num, args.min_count)
vocab.save(args.output_path)
"""
This script provides an exmaple to wrap TencentPretrain for cloze test.
One character in a line is masked.
We should use the target that contains MLM.
"""
import sys
import os
import torch
import argparse
import random
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
def mask_token(tokens, seq_length, tokenizer):
"""
Mask a random token for prediction.
"""
start = 1
end = len(tokens) if len(tokens) < seq_length else seq_length
mask_pos = random.randint(start, end-1)
token = tokens[mask_pos]
tokens[mask_pos] = tokenizer.convert_tokens_to_ids([MASK_TOKEN])[0]
return (tokens, mask_pos, token)
def batch_loader(batch_size, src, seg, mask_pos, label):
instances_num = src.size(0)
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
mask_pos_batch = mask_pos[i * batch_size : (i + 1) * batch_size]
label_batch = label[i * batch_size : (i + 1) * batch_size]
yield src_batch, seg_batch, mask_pos_batch, label_batch
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
mask_pos_batch = mask_pos[instances_num // batch_size * batch_size :]
label_batch = label[instances_num // batch_size * batch_size :]
yield src_batch, seg_batch, mask_pos_batch, label_batch
def read_dataset(args, path):
dataset = []
PAD_ID = args.tokenizer.vocab.get(PAD_TOKEN)
with open(path, mode="r", encoding="utf-8") as f:
for line in f:
src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(line.strip()))
if len(src) == 0:
continue
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + src + args.tokenizer.convert_tokens_to_ids([SEP_TOKEN])
src, mask_pos, label = mask_token(src, args.seq_length, args.tokenizer)
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[:args.seq_length]
seg = seg[:args.seq_length]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(PAD_ID)
dataset.append((src, seg, mask_pos, label))
return dataset
class ClozeTest(torch.nn.Module):
def __init__(self, args):
super(ClozeTest, self).__init__()
# self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.embedding = Embedding(args)
for embedding_name in args.embedding:
tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
self.embedding.update(tmp_emb, embedding_name)
self.encoder = str2encoder[args.encoder](args)
self.target = MlmTarget(args, len(args.tokenizer.vocab))
self.act = str2act[args.hidden_act]
def forward(self, src, seg):
emb = self.embedding(src, seg)
output = self.encoder(emb, seg)
output = self.act(self.target.mlm_linear_1(output))
output = self.target.layer_norm(output)
output = self.target.mlm_linear_2(output)
prob = torch.nn.Softmax(dim=-1)(output)
return prob
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--topn", type=int, default=10,
help="Print top n nearest neighbours.")
args = parser.parse_args()
args.target = "mlm"
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build cloze test model.
model = ClozeTest(args)
model = load_model(model, args.load_model_path)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
model.eval()
dataset = read_dataset(args, args.test_path)
src = torch.LongTensor([sample[0] for sample in dataset])
seg = torch.LongTensor([sample[1] for sample in dataset])
mask_pos = [sample[2] for sample in dataset]
label = [sample[3] for sample in dataset]
f_pred = open(args.prediction_path, mode="w", encoding="utf-8")
for i, (src_batch, seg_batch, mask_pos_batch, label_batch) in \
enumerate(batch_loader(args.batch_size, src, seg, mask_pos, label)):
src_batch = src_batch.to(device)
seg_batch = seg_batch.to(device)
prob = model(src_batch, seg_batch)
for j, p in enumerate(mask_pos_batch):
topn_ids = (-prob[j][p]).argsort()[:args.topn]
sentence = "".join([args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in src_batch[j] if token_id != 0])
pred_tokens = " ".join(args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in topn_ids)
label_token = args.tokenizer.convert_ids_to_tokens([label_batch[j]])[0]
f_pred.write(sentence + '\n')
f_pred.write("Predicted answer: " + pred_tokens + '\n')
f_pred.write("Correct answer: " + label_token + '\n')
f_pred.write("\n")
f_pred.close()
import argparse
import collections
import torch
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin",
help=".")
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin",
help=".")
args = parser.parse_args()
input_model = torch.load(args.input_model_path, map_location="cpu")
output_model = collections.OrderedDict()
output_model["embedding.word.embedding.weight"] = \
input_model["albert.embeddings.word_embeddings.weight"]
output_model["embedding.pos.embedding.weight"] = \
input_model["albert.embeddings.position_embeddings.weight"]
output_model["embedding.seg.embedding.weight"] = \
torch.cat((torch.Tensor([[0]*input_model["albert.embeddings.token_type_embeddings.weight"].size()[1]]),
input_model["albert.embeddings.token_type_embeddings.weight"]), dim=0)
output_model["embedding.layer_norm.gamma"] = \
input_model["albert.embeddings.LayerNorm.weight"]
output_model["embedding.layer_norm.beta"] = \
input_model["albert.embeddings.LayerNorm.bias"]
output_model["encoder.linear.weight"] = \
input_model["albert.encoder.embedding_hidden_mapping_in.weight"]
output_model["encoder.linear.bias"] = \
input_model["albert.encoder.embedding_hidden_mapping_in.bias"]
output_model["encoder.transformer.layer_norm_2.gamma"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.full_layer_layer_norm.weight"]
output_model["encoder.transformer.layer_norm_2.beta"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.full_layer_layer_norm.bias"]
output_model["encoder.transformer.self_attn.linear_layers.0.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.query.weight"]
output_model["encoder.transformer.self_attn.linear_layers.0.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.query.bias"]
output_model["encoder.transformer.self_attn.linear_layers.1.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.key.weight"]
output_model["encoder.transformer.self_attn.linear_layers.1.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.key.bias"]
output_model["encoder.transformer.self_attn.linear_layers.2.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.value.weight"]
output_model["encoder.transformer.self_attn.linear_layers.2.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.value.bias"]
output_model["encoder.transformer.self_attn.final_linear.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.dense.weight"]
output_model["encoder.transformer.self_attn.final_linear.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.dense.bias"]
output_model["encoder.transformer.layer_norm_1.gamma"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.LayerNorm.weight"]
output_model["encoder.transformer.layer_norm_1.beta"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.attention.LayerNorm.bias"]
output_model["encoder.transformer.feed_forward.linear_1.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.ffn.weight"]
output_model["encoder.transformer.feed_forward.linear_1.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.ffn.bias"]
output_model["encoder.transformer.feed_forward.linear_2.weight"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.ffn_output.weight"]
output_model["encoder.transformer.feed_forward.linear_2.bias"] = \
input_model["albert.encoder.albert_layer_groups.0.albert_layers.0.ffn_output.bias"]
output_model["target.sp.linear_1.weight"] = input_model["albert.pooler.weight"]
output_model["target.sp.linear_1.bias"] = input_model["albert.pooler.bias"]
output_model["target.sp.linear_2.weight"] = input_model["sop_classifier.classifier.weight"]
output_model["target.sp.linear_2.bias"] = input_model["sop_classifier.classifier.bias"]
output_model["target.mlm.linear_1.weight"] = input_model["predictions.dense.weight"]
output_model["target.mlm.linear_1.bias"] = input_model["predictions.dense.bias"]
output_model["target.mlm.linear_2.weight"] = input_model["predictions.decoder.weight"]
output_model["target.mlm.linear_2.bias"] = input_model["predictions.bias"]
output_model["target.mlm.layer_norm.gamma"] = input_model["predictions.LayerNorm.weight"]
output_model["target.mlm.layer_norm.beta"] = input_model["predictions.LayerNorm.bias"]
torch.save(output_model, args.output_model_path)
import argparse
import collections
import tensorflow as tf
import torch
from tensorflow.python import pywrap_tensorflow
tensors_to_transopse = (
"kernel",
)
def main():
parser = argparse.ArgumentParser()
# Path options.
parser.add_argument("--input_model_path", type=str, default="models/input_model.ckpt",
help="Path of the input model.")
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin",
help="Path of the output model.")
args = parser.parse_args()
reader = pywrap_tensorflow.NewCheckpointReader(args.input_model_path)
var_to_shape_map = reader.get_variable_to_shape_map()
input_model = collections.OrderedDict()
for key in var_to_shape_map:
torch_tensor = reader.get_tensor(key)
if any([x in key for x in tensors_to_transopse]):
torch_tensor = torch_tensor.T
if key == "bert/embeddings/token_type_embeddings":
col_dim = torch_tensor.shape[1]
sess = tf.Session()
zeros_var = tf.Variable(tf.zeros([1, col_dim], dtype=tf.float32), name="zeros_var")
sess.run(zeros_var.initializer)
torch_tensor = sess.run(tf.concat([sess.run(zeros_var), torch_tensor], 0))
input_model[key] = torch.Tensor(torch_tensor)
output_model = collections.OrderedDict()
output_model["embedding.word.embedding.weight"] = input_model["bert/embeddings/word_embeddings"]
output_model["encoder.linear.weight"] = input_model["bert/encoder/embedding_hidden_mapping_in/kernel"]
output_model["encoder.linear.bias"] = input_model["bert/encoder/embedding_hidden_mapping_in/bias"]
output_model["embedding.pos.embedding.weight"] = input_model["bert/embeddings/position_embeddings"][:512]
output_model["embedding.seg.embedding.weight"] = input_model["bert/embeddings/token_type_embeddings"]
output_model["embedding.layer_norm.gamma"] = input_model["bert/embeddings/LayerNorm/gamma"]
output_model["embedding.layer_norm.beta"] = input_model["bert/embeddings/LayerNorm/beta"]
output_model["encoder.transformer.self_attn.linear_layers.0.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel"]
output_model["encoder.transformer.self_attn.linear_layers.0.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/bias"]
output_model["encoder.transformer.self_attn.linear_layers.1.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/key/kernel"]
output_model["encoder.transformer.self_attn.linear_layers.1.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/key/bias"]
output_model["encoder.transformer.self_attn.linear_layers.2.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/value/kernel"]
output_model["encoder.transformer.self_attn.linear_layers.2.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/self/value/bias"]
output_model["encoder.transformer.self_attn.final_linear.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/output/dense/kernel"]
output_model["encoder.transformer.self_attn.final_linear.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/attention_1/output/dense/bias"]
output_model["encoder.transformer.layer_norm_1.gamma"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/LayerNorm/gamma"]
output_model["encoder.transformer.layer_norm_1.beta"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/LayerNorm/beta"]
output_model["encoder.transformer.feed_forward.linear_1.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/dense/kernel"]
output_model["encoder.transformer.feed_forward.linear_1.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/dense/bias"]
output_model["encoder.transformer.feed_forward.linear_2.weight"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/output/dense/kernel"]
output_model["encoder.transformer.feed_forward.linear_2.bias"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/ffn_1/intermediate/output/dense/bias"]
output_model["encoder.transformer.layer_norm_2.gamma"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/LayerNorm_1/gamma"]
output_model["encoder.transformer.layer_norm_2.beta"] = \
input_model["bert/encoder/transformer/group_0/inner_group_0/LayerNorm_1/beta"]
output_model["target.sp.linear_1.weight"] = input_model["bert/pooler/dense/kernel"]
output_model["target.sp.linear_1.bias"] = input_model["bert/pooler/dense/bias"]
output_model["target.sp.linear_2.weight"] = input_model["cls/seq_relationship/output_weights"]
output_model["target.sp.linear_2.bias"] = input_model["cls/seq_relationship/output_bias"]
output_model["target.mlm.linear_1.weight"] = input_model["cls/predictions/transform/dense/kernel"]
output_model["target.mlm.linear_1.bias"] = input_model["cls/predictions/transform/dense/bias"]
output_model["target.mlm.layer_norm.gamma"] = input_model["cls/predictions/transform/LayerNorm/gamma"]
output_model["target.mlm.layer_norm.beta"] = input_model["cls/predictions/transform/LayerNorm/beta"]
output_model["target.mlm.linear_2.weight"] = input_model["bert/embeddings/word_embeddings"]
output_model["target.mlm.linear_2.bias"] = input_model["cls/predictions/output_bias"]
torch.save(output_model, args.output_model_path)
if __name__ == "__main__":
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment