# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding=UTF-8 import argparse import os from functools import partial import paddle from ann_util import build_index from base_model import SemanticIndexBase from data import convert_corpus_example, create_dataloader, gen_id2corpus, gen_text_file from paddlenlp.data import Pad, Tuple from paddlenlp.datasets import MapDataset from paddlenlp.transformers import AutoModel, AutoTokenizer from paddlenlp.utils.log import logger # fmt: off parser = argparse.ArgumentParser() parser.add_argument("--corpus_file", type=str, required=True, help="The full path of input file") parser.add_argument("--similar_text_pair_file", type=str, required=True, help="The full path of similar text pair file") parser.add_argument("--recall_result_dir", type=str, default='recall_result', help="The full path of recall result file to save") parser.add_argument("--recall_result_file", type=str, default='recall_result_file', help="The file name of recall result") parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.") parser.add_argument("--max_seq_length", default=64, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.") parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--output_emb_size", default=None, type=int, help="output_embedding_size") parser.add_argument("--recall_num", default=10, type=int, help="Recall number for each query from Ann index.") parser.add_argument("--hnsw_m", default=100, type=int, help="Recall number for each query from Ann index.") parser.add_argument("--hnsw_ef", default=100, type=int, help="Recall number for each query from Ann index.") parser.add_argument("--hnsw_max_elements", default=1000000, type=int, help="Recall number for each query from Ann index.") parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument("--model_name_or_path", default='rocketqa-zh-dureader-query-encoder', type=str, help='The pretrained model used for training') args = parser.parse_args() # fmt: on if __name__ == "__main__": paddle.set_device(args.device) rank = paddle.distributed.get_rank() if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) trans_func = partial(convert_corpus_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # text_input Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"), # text_segment ): [data for data in fn(samples)] pretrained_model = AutoModel.from_pretrained(args.model_name_or_path) model = SemanticIndexBase(pretrained_model, output_emb_size=args.output_emb_size) model = paddle.DataParallel(model) # Load pretrained semantic model if args.params_path and os.path.isfile(args.params_path): state_dict = paddle.load(args.params_path) model.set_dict(state_dict) logger.info("Loaded parameters from %s" % args.params_path) else: raise ValueError("Please set --params_path with correct pretrained model file") id2corpus = gen_id2corpus(args.corpus_file) # conver_example function's input must be dict corpus_list = [{idx: text} for idx, text in id2corpus.items()] corpus_ds = MapDataset(corpus_list) corpus_data_loader = create_dataloader( corpus_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func ) # Need better way to get inner model of DataParallel inner_model = model._layers final_index = build_index( corpus_data_loader, inner_model, output_emb_size=args.output_emb_size, hnsw_max_elements=args.hnsw_max_elements, hnsw_ef=args.hnsw_ef, hnsw_m=args.hnsw_m, ) text_list, text2similar_text = gen_text_file(args.similar_text_pair_file) query_ds = MapDataset(text_list) query_data_loader = create_dataloader( query_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func ) query_embedding = inner_model.get_semantic_embedding(query_data_loader) if not os.path.exists(args.recall_result_dir): os.mkdir(args.recall_result_dir) recall_result_file = os.path.join(args.recall_result_dir, args.recall_result_file) with open(recall_result_file, "w", encoding="utf-8") as f: for batch_index, batch_query_embedding in enumerate(query_embedding): recalled_idx, cosine_sims = final_index.knn_query(batch_query_embedding.numpy(), args.recall_num) batch_size = len(cosine_sims) for row_index in range(batch_size): text_index = args.batch_size * batch_index + row_index for idx, doc_idx in enumerate(recalled_idx[row_index]): f.write( "{}\t{}\t{}\n".format( text_list[text_index]["text"], id2corpus[doc_idx], 1.0 - cosine_sims[row_index][idx] ) )