# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import os import paddle import paddle.nn.functional as F from paddle.io import BatchSampler, DataLoader from utils import preprocess_function, read_local_dataset from paddlenlp.data import DataCollatorWithPadding from paddlenlp.datasets import load_dataset from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer from paddlenlp.utils.log import logger # yapf: disable parser = argparse.ArgumentParser() parser.add_argument('--device', default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument("--dataset_dir", required=True, default=None, type=str, help="Local dataset directory should include data.txt and label.txt") parser.add_argument("--params_path", default="./checkpoint/", type=str, help="The path to model parameters to be loaded.") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.") parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--data_file", type=str, default="data.txt", help="Unlabeled data file name") parser.add_argument("--label_file", type=str, default="label.txt", help="Label file name") args = parser.parse_args() # yapf: enable @paddle.no_grad() def predict(): """ Predicts the data labels. """ paddle.set_device(args.device) model = AutoModelForSequenceClassification.from_pretrained(args.params_path) tokenizer = AutoTokenizer.from_pretrained(args.params_path) label_list = [] label_path = os.path.join(args.dataset_dir, args.label_file) with open(label_path, "r", encoding="utf-8") as f: for i, line in enumerate(f): label_list.append(line.strip()) data_ds = load_dataset( read_local_dataset, path=os.path.join(args.dataset_dir, args.data_file), is_test=True, lazy=False ) trans_func = functools.partial( preprocess_function, tokenizer=tokenizer, max_seq_length=args.max_seq_length, label_nums=len(label_list), is_test=True, ) data_ds = data_ds.map(trans_func) # batchify dataset collate_fn = DataCollatorWithPadding(tokenizer) data_batch_sampler = BatchSampler(data_ds, batch_size=args.batch_size, shuffle=False) data_data_loader = DataLoader(dataset=data_ds, batch_sampler=data_batch_sampler, collate_fn=collate_fn) results = [] model.eval() for batch in data_data_loader: logits = model(**batch) probs = F.sigmoid(logits).numpy() for prob in probs: labels = [] for i, p in enumerate(prob): if p > 0.5: labels.append(label_list[i]) results.append(labels) for t, labels in zip(data_ds.data, results): hierarchical_labels = {} logger.info("text: {}".format(t["sentence"])) logger.info("prediction result: {}".format(",".join(labels))) for label in labels: for i, l in enumerate(label.split("##")): if i not in hierarchical_labels: hierarchical_labels[i] = [] if l not in hierarchical_labels[i]: hierarchical_labels[i].append(l) for d in range(len(hierarchical_labels)): logger.info("level {} : {}".format(d + 1, ",".join(hierarchical_labels[d]))) logger.info("--------------------") return if __name__ == "__main__": predict()