# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle from paddlenlp.transformers import AutoModelForSequenceClassification # yapf: disable parser = argparse.ArgumentParser() parser.add_argument('--multilingual', action='store_true', help='Whether is multilingual task') parser.add_argument("--params_path", type=str, default='./checkpoint/', help="The path to model parameters to be loaded.") parser.add_argument("--output_path", type=str, default='./export', help="The path of model parameter in static graph to be saved.") args = parser.parse_args() # yapf: enable if __name__ == "__main__": model = AutoModelForSequenceClassification.from_pretrained(args.params_path) model.eval() if args.multilingual: input_spec = [paddle.static.InputSpec(shape=[None, None], dtype="int64", name="input_ids")] else: input_spec = [ paddle.static.InputSpec(shape=[None, None], dtype="int64", name="input_ids"), paddle.static.InputSpec(shape=[None, None], dtype="int64", name="token_type_ids"), ] # Convert to static graph with specific input description model = paddle.jit.to_static(model, input_spec=input_spec) # Save in static graph model. save_path = os.path.join(args.output_path, "float32") paddle.jit.save(model, save_path)