# coding=utf-8 # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import random import time from urllib.error import URLError from urllib.parse import urlencode from urllib.request import Request, urlopen import numpy as np import paddle from tqdm import tqdm def set_seed(seed): paddle.seed(seed) random.seed(seed) np.random.seed(seed) class ASRError(Exception): pass def mandarin_asr_api(api_key, secret_key, audio_file, audio_format="wav"): """Mandarin ASR Args: audio_file (str): Audio file of Mandarin with sampling rate 16000. audio_format (str): The file extension of audio_file, 'wav' by default. Please refer to https://github.com/Baidu-AIP/speech-demo for more demos. """ # Configurations. TOKEN_URL = "http://aip.baidubce.com/oauth/2.0/token" ASR_URL = "http://vop.baidu.com/server_api" SCOPE = "audio_voice_assistant_get" API_KEY = api_key SECRET_KEY = secret_key # Fetch tokens from TOKEN_URL. post_data = urlencode( {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY} ).encode("utf-8") request = Request(TOKEN_URL, post_data) try: result_str = urlopen(request).read() except URLError as error: print("token http response http code : " + str(error.code)) result_str = error.read() result_str = result_str.decode() result = json.loads(result_str) if "access_token" in result.keys() and "scope" in result.keys(): if SCOPE and (SCOPE not in result["scope"].split(" ")): raise ASRError("scope is not correct!") token = result["access_token"] else: raise ASRError( "MAYBE API_KEY or SECRET_KEY not correct: " + "access_token or scope not found in token response" ) # Fetch results by ASR api. with open(audio_file, "rb") as speech_file: speech_data = speech_file.read() length = len(speech_data) if length == 0: raise ASRError("file %s length read 0 bytes" % audio_file) params_query = urlencode({"cuid": "ASR", "token": token, "dev_pid": 1537}) headers = {"Content-Type": "audio/%s; rate=16000" % audio_format, "Content-Length": length} url = ASR_URL + "?" + params_query request = Request(url, speech_data, headers) try: begin = time.time() result_str = urlopen(request).read() print("Request time cost %f" % (time.time() - begin)) except URLError as error: print("asr http response http code : " + str(error.code)) result_str = error.read() result_str = str(result_str, "utf-8") result = json.loads(result_str) return result["result"][0] @paddle.no_grad() def evaluate(model, metric, data_loader): """ Given a dataset, it evals model and computes the metric. Args: model(obj:`paddle.nn.Layer`): A model to classify texts. metric(obj:`paddle.metric.Metric`): The evaluation metric. data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches. """ model.eval() metric.reset() for batch in data_loader: input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids) start_ids = paddle.cast(start_ids, "float32") end_ids = paddle.cast(end_ids, "float32") num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids) metric.update(num_correct, num_infer, num_label) precision, recall, f1 = metric.accumulate() model.train() return precision, recall, f1 def convert_example(example, tokenizer, max_seq_len): """ example: { title prompt content result_list } """ encoded_inputs = tokenizer( text=[example["prompt"]], text_pair=[example["content"]], stride=len(example["prompt"]), truncation=True, max_seq_len=max_seq_len, pad_to_max_seq_len=True, return_attention_mask=True, return_position_ids=True, return_dict=False, ) encoded_inputs = encoded_inputs[0] offset_mapping = [list(x) for x in encoded_inputs["offset_mapping"]] bias = 0 for index in range(len(offset_mapping)): if index == 0: continue mapping = offset_mapping[index] if mapping[0] == 0 and mapping[1] == 0 and bias == 0: bias = index if mapping[0] == 0 and mapping[1] == 0: continue offset_mapping[index][0] += bias offset_mapping[index][1] += bias start_ids = [0 for x in range(max_seq_len)] end_ids = [0 for x in range(max_seq_len)] for item in example["result_list"]: start = map_offset(item["start"] + bias, offset_mapping) end = map_offset(item["end"] - 1 + bias, offset_mapping) start_ids[start] = 1.0 end_ids[end] = 1.0 tokenized_output = [ encoded_inputs["input_ids"], encoded_inputs["token_type_ids"], encoded_inputs["position_ids"], encoded_inputs["attention_mask"], start_ids, end_ids, ] tokenized_output = [np.array(x, dtype="int64") for x in tokenized_output] return tuple(tokenized_output) def map_offset(ori_offset, offset_mapping): """ map ori offset to token offset """ for index, span in enumerate(offset_mapping): if span[0] <= ori_offset < span[1]: return index return -1 def reader(data_path, max_seq_len=512): """ read json """ with open(data_path, "r", encoding="utf-8") as f: for line in f: json_line = json.loads(line) content = json_line["content"] prompt = json_line["prompt"] # Model Input is aslike: [CLS] Prompt [SEP] Content [SEP] # It include three summary tokens. if max_seq_len <= len(prompt) + 3: raise ValueError("The value of max_seq_len is too small, please set a larger value") max_content_len = max_seq_len - len(prompt) - 3 if len(content) <= max_content_len: yield json_line else: result_list = json_line["result_list"] json_lines = [] accumulate = 0 while True: cur_result_list = [] for result in result_list: if result["start"] + 1 <= max_content_len < result["end"]: max_content_len = result["start"] break cur_content = content[:max_content_len] res_content = content[max_content_len:] while True: if len(result_list) == 0: break elif result_list[0]["end"] <= max_content_len: if result_list[0]["end"] > 0: cur_result = result_list.pop(0) cur_result_list.append(cur_result) else: cur_result_list = [result for result in result_list] break else: break json_line = {"content": cur_content, "result_list": cur_result_list, "prompt": prompt} json_lines.append(json_line) for result in result_list: if result["end"] <= 0: break result["start"] -= max_content_len result["end"] -= max_content_len accumulate += max_content_len max_content_len = max_seq_len - len(prompt) - 3 if len(res_content) == 0: break elif len(res_content) < max_content_len: json_line = {"content": res_content, "result_list": result_list, "prompt": prompt} json_lines.append(json_line) break else: content = res_content for json_line in json_lines: yield json_line def add_negative_example(examples, texts, prompts, label_set, negative_ratio): with tqdm(total=len(prompts)) as pbar: for i, prompt in enumerate(prompts): negtive_sample = [] redundants_list = list(set(label_set) ^ set(prompt)) redundants_list.sort() if len(examples[i]) == 0: continue else: actual_ratio = math.ceil(len(redundants_list) / len(examples[i])) if actual_ratio <= negative_ratio: idxs = [k for k in range(len(redundants_list))] else: idxs = random.sample(range(0, len(redundants_list)), negative_ratio * len(examples[i])) for idx in idxs: negtive_result = {"content": texts[i], "result_list": [], "prompt": redundants_list[idx]} negtive_sample.append(negtive_result) examples[i].extend(negtive_sample) pbar.update(1) return examples def construct_relation_prompt_set(entity_name_set, predicate_set): relation_prompt_set = set() for entity_name in entity_name_set: for predicate in predicate_set: # The relation prompt is constructed as follows: # subject + "的" + predicate relation_prompt = entity_name + "的" + predicate relation_prompt_set.add(relation_prompt) return sorted(list(relation_prompt_set)) def convert_ext_examples(raw_examples, negative_ratio): texts = [] entity_examples = [] relation_examples = [] entity_prompts = [] relation_prompts = [] entity_label_set = [] entity_name_set = [] predicate_set = [] print("Converting doccano data...") with tqdm(total=len(raw_examples)) as pbar: for line in raw_examples: items = json.loads(line) entity_id = 0 if "data" in items.keys(): text = items["data"] entities = [] for item in items["label"]: entity = {"id": entity_id, "start_offset": item[0], "end_offset": item[1], "label": item[2]} entities.append(entity) entity_id += 1 relations = [] else: text, relations, entities = items["text"], items["relations"], items["entities"] texts.append(text) entity_example = [] entity_prompt = [] entity_example_map = {} entity_map = {} # id to entity name for entity in entities: entity_name = text[entity["start_offset"] : entity["end_offset"]] entity_map[entity["id"]] = { "name": entity_name, "start": entity["start_offset"], "end": entity["end_offset"], } entity_label = entity["label"] result = {"text": entity_name, "start": entity["start_offset"], "end": entity["end_offset"]} if entity_label not in entity_example_map.keys(): entity_example_map[entity_label] = { "content": text, "result_list": [result], "prompt": entity_label, } else: entity_example_map[entity_label]["result_list"].append(result) if entity_label not in entity_label_set: entity_label_set.append(entity_label) if entity_name not in entity_name_set: entity_name_set.append(entity_name) entity_prompt.append(entity_label) for v in entity_example_map.values(): entity_example.append(v) entity_examples.append(entity_example) entity_prompts.append(entity_prompt) relation_example = [] relation_prompt = [] relation_example_map = {} for relation in relations: predicate = relation["type"] subject_id = relation["from_id"] object_id = relation["to_id"] # The relation prompt is constructed as follows: # subject + "的" + predicate prompt = entity_map[subject_id]["name"] + "的" + predicate result = { "text": entity_map[object_id]["name"], "start": entity_map[object_id]["start"], "end": entity_map[object_id]["end"], } if prompt not in relation_example_map.keys(): relation_example_map[prompt] = {"content": text, "result_list": [result], "prompt": prompt} else: relation_example_map[prompt]["result_list"].append(result) if predicate not in predicate_set: predicate_set.append(predicate) relation_prompt.append(prompt) for v in relation_example_map.values(): relation_example.append(v) relation_examples.append(relation_example) relation_prompts.append(relation_prompt) pbar.update(1) print("Adding negative samples for first stage prompt...") entity_examples = add_negative_example(entity_examples, texts, entity_prompts, entity_label_set, negative_ratio) if len(predicate_set) != 0: print("Constructing relation prompts...") relation_prompt_set = construct_relation_prompt_set(entity_name_set, predicate_set) print("Adding negative samples for second stage prompt...") relation_examples = add_negative_example( relation_examples, texts, relation_prompts, relation_prompt_set, negative_ratio ) return entity_examples, relation_examples def create_dataloader(dataset, mode="train", batch_size=1, batchify_fn=None, trans_fn=None): if trans_fn: dataset = dataset.map(trans_fn) shuffle = True if mode == "train" else False if mode == "train": batch_sampler = paddle.io.DistributedBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle) else: batch_sampler = paddle.io.BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle) return paddle.io.DataLoader(dataset=dataset, batch_sampler=batch_sampler, collate_fn=batchify_fn, return_list=True)