# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re from functools import partial import paddle from tqdm import tqdm from utils import ( convert_example, create_data_loader, get_relation_type_dict, reader, unify_prompt_name, ) from paddlenlp.datasets import MapDataset, load_dataset from paddlenlp.metrics import SpanEvaluator from paddlenlp.transformers import UIE, AutoTokenizer from paddlenlp.utils.log import logger @paddle.no_grad() def evaluate(model, metric, data_loader): """ Given a dataset, it evals model and computes the metric. Args: model(obj:`paddle.nn.Layer`): A model to classify texts. metric(obj:`paddle.metric.Metric`): The evaluation metric. data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches. """ model.eval() metric.reset() for batch in tqdm(data_loader): input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids) start_ids = paddle.cast(start_ids, "float32") end_ids = paddle.cast(end_ids, "float32") num_correct, num_infer, num_label = metric.compute(start_prob, end_prob, start_ids, end_ids) metric.update(num_correct, num_infer, num_label) precision, recall, f1 = metric.accumulate() model.train() return precision, recall, f1 def do_eval(): tokenizer = AutoTokenizer.from_pretrained(args.model_path) model = UIE.from_pretrained(args.model_path) test_ds = load_dataset(reader, data_path=args.test_path, max_seq_len=args.max_seq_len, lazy=False) class_dict = {} relation_data = [] if args.debug: for data in test_ds: class_name = unify_prompt_name(data["prompt"]) # Only positive examples are evaluated in debug mode if re.search(r"\[.*?\]$", data["prompt"]) and data["result_list"][0]["text"] == "未提及": continue if len(data["result_list"]) != 0: if "的" not in data["prompt"]: class_dict.setdefault(class_name, []).append(data) else: relation_data.append((data["prompt"], data)) relation_type_dict = get_relation_type_dict(relation_data) else: class_dict["all_classes"] = test_ds trans_fn = partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len) for key in class_dict.keys(): if args.debug: test_ds = MapDataset(class_dict[key]) else: test_ds = class_dict[key] test_data_loader = create_data_loader(test_ds, mode="test", batch_size=args.batch_size, trans_fn=trans_fn) metric = SpanEvaluator() precision, recall, f1 = evaluate(model, metric, test_data_loader) logger.info("-----------------------------") logger.info("Class Name: %s" % key) logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1)) if args.debug and len(relation_type_dict.keys()) != 0: for key in relation_type_dict.keys(): test_ds = MapDataset(relation_type_dict[key]) test_data_loader = create_data_loader(test_ds, mode="test", batch_size=args.batch_size, trans_fn=trans_fn) metric = SpanEvaluator() precision, recall, f1 = evaluate(model, metric, test_data_loader) logger.info("-----------------------------") logger.info("Class Name: X的%s" % key) logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" % (precision, recall, f1)) if __name__ == "__main__": # yapf: disable parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default=None, help="The path of saved model that you want to load.") parser.add_argument("--test_path", type=str, default=None, help="The path of test set.") parser.add_argument("--batch_size", type=int, default=16, help="Batch size per GPU/CPU for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="The maximum total input sequence length after tokenization.") parser.add_argument("--debug", action='store_true', help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.") args = parser.parse_args() # yapf: enable do_eval()