# 细粒度情感分类模型 ## 1. 方案设计 本项目将进行属性级别的情感分类,对于给定的一段文本,我们在基于评论观点抽取模型抽取出不同属性对应的观点后,便可以有针对性地对各个属性判别情感极性。具体来讲,本项目将抽取出的评论属性和观点进行拼接,然后和原始语句进行拼接作为一条独立的训练语句。 如图1所示,首先将评论属性和观点词进行拼接为"味道好",然后将"味道好"和原文进行拼接,然后传入SKEP模型,并使用 "CLS" 位置的向量进行细粒度情感倾向。

图1 细粒度情感分类模型

## 2. 项目结构说明 以下是本项目运行的完整目录结构及说明: ```shell . ├── data.py # 数据处理脚本 ├── model.py # 模型组网脚本 ├── train.py # 模型训练脚本 ├── evaluate.py # 模型评估脚本 ├── run_train.sh # 模型训练命令 ├── run_evaluate.sh # 模型评估命令 └── README.md ``` ## 3. 数据说明 本实验中,相应的数据集需要包含3列数据:标签、评论观点和原文,下面给出了一些样本示例。 - 1 口味清淡 口味很清淡,价格也比较公道 - 1 经济实惠 经济实惠,环境好,套餐划算 - 0 设施一般 房间大,设施一般 可点击 [cls_data](https://bj.bcebos.com/v1/paddlenlp/data/cls_data.tar.gz) 进行 Demo 数据下载,将数据解压之后放入父目录的 `data/cls_data/` 文件夹下。 ## 4. 模型效果展示 在分类模型训练过程中,总共训练了10轮,并选择了评估 F1 得分最高的 best 模型,下表展示了训练过程中使用的训练参数。我们同时开源了相应的模型,可点击下表的 `cls_model` 进行下载,下载后将模型重命名为 `best.pdparams`,然后放入父目录的 `checkpoints/cls_checkpoints` 中。 |Model|训练参数配置|MD5| | ------------ | ------------ |-----------| |[cls_model](https://bj.bcebos.com/paddlenlp/models/best_cls.pdparams)|
learning_rate: 3e-5, batch_size: 16, max_seq_len:256, epochs:10
|3de6ddf581e665d9b1d035c29b49778a| 我们基于训练过程中的 best 模型在验证集 `dev` 和测试集 `test` 上进行了评估测试,模型效果如下表所示: |Model|数据集|precision|Recall|F1| | ------------ | ------------ | ------------ |-----------|------------ | |SKEP-Large|dev|0.98758|0.99251|0.99004| |SKEP-Large|test|0.98497|0.99139|0.98817| **备注**: 以上数据是基于全量数据训练和测试结果,并非 Demo 数据集。 ## 5. 模型训练 通过运行以下命令进行分类模型训练: ```shell sh run_train.sh ``` ## 6. 模型测试 通过运行以下命令进行分类模型测试: ```shell sh run_evaluate.sh ```