# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from functools import partial import numpy as np import paddle from data import convert_example, create_dataloader, read_text_pair from model import SimCSE from paddlenlp.data import Pad, Tuple from paddlenlp.datasets import load_dataset from paddlenlp.transformers import AutoModel, AutoTokenizer # yapf: disable parser = argparse.ArgumentParser() parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.") parser.add_argument("--text_pair_file", type=str, required=True, help="The full path of input file") parser.add_argument("--params_path", type=str, required=True, help="The path to model parameters to be loaded.") parser.add_argument("--max_seq_length", default=64, type=int, help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.") parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--margin", default=0.0, type=float, help="Margin between pos_sample and neg_samples.") parser.add_argument("--scale", default=20, type=int, help="Scale for pair-wise margin_rank_loss.") parser.add_argument("--output_emb_size", default=0, type=int, help="Output_embedding_size, 0 means use hidden_size as output embedding size.") parser.add_argument("--model_name_or_path", default='rocketqa-zh-base-query-encoder', type=str, help='The pretrained model used for training') args = parser.parse_args() # yapf: enable def predict(model, data_loader): """ Predicts the data labels. Args: model (obj:`SimCSE`): A model to extract text embedding or calculate similarity of text pair. data_loader (obj:`List(Example)`): The processed data ids of text pair: [query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids] Returns: results(obj:`List`): cosine similarity of text pairs. """ cosine_sims = [] model.eval() with paddle.no_grad(): for batch_data in data_loader: query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids = batch_data batch_cosine_sim = model.cosine_sim( query_input_ids=query_input_ids, title_input_ids=title_input_ids, query_token_type_ids=query_token_type_ids, title_token_type_ids=title_token_type_ids, ).numpy() cosine_sims.append(batch_cosine_sim) cosine_sims = np.concatenate(cosine_sims, axis=0) return cosine_sims if __name__ == "__main__": paddle.set_device(args.device) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_length=args.max_seq_length) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # query_input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # query_segment Pad(axis=0, pad_val=tokenizer.pad_token_id), # title_input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # title_segment ): [data for data in fn(samples)] valid_ds = load_dataset(read_text_pair, data_path=args.text_pair_file, lazy=False, is_test=True) valid_data_loader = create_dataloader( valid_ds, mode="predict", batch_size=args.batch_size, batchify_fn=batchify_fn, trans_fn=trans_func ) pretrained_model = AutoModel.from_pretrained(args.model_name_or_path) model = SimCSE(pretrained_model, margin=args.margin, scale=args.scale, output_emb_size=args.output_emb_size) if args.params_path and os.path.isfile(args.params_path): state_dict = paddle.load(args.params_path) model.set_dict(state_dict) print("Loaded parameters from %s" % args.params_path) else: raise ValueError("Please set --params_path with correct pretrained model file") cosin_sim = predict(model, valid_data_loader) for idx, cosine in enumerate(cosin_sim): print("{}".format(cosine))