# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import json import numpy as np def view_ocr_result(img_path, bboxes, opath): image = cv2.imread(img_path) for char_bbox in bboxes: x_min, x_max, y_min, y_max = char_bbox cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0, 0, 255), 1) cv2.imwrite(opath, image) def _highlight_bbox(img, bbox): x = bbox[0] w = bbox[1] - x y = bbox[2] h = bbox[3] - y sub_img = img[y : y + h, x : x + w] colored_rect = np.zeros(sub_img.shape, dtype=np.uint8) colored_rect[:, :, 2] = 255 colored_rect[:, :, 1] = 255 res = cv2.addWeighted(sub_img, 0.5, colored_rect, 0.5, 1.0) img[y : y + h, x : x + w] = res def highlight_ans(source_img_path, output_img_path, ans_bbox): image = cv2.imread(source_img_path) for bbox in ans_bbox: _highlight_bbox(image, bbox) cv2.imwrite(output_img_path, image) def highlight_img(source_img_path, output_img_path): image = cv2.imread(source_img_path) height = image.shape[0] width = image.shape[1] bbox = [0, width - 1, 0, height - 1] _highlight_bbox(image, bbox) cv2.imwrite(output_img_path, image) if __name__ == "__main__": res_path = "./data/decode_res.json" result = {} with open(res_path, "r", encoding="utf-8") as f: line = f.readline() result = json.loads(line.strip()) img_path = "../OCR_process/demo_pics/demo_{}.png".format(result["img_id"]) img_save_path = "../answer.png" highlight_ans(img_path, img_save_path, result["predict_bboxes"]) print("extraction result has been saved to answer.png")