import argparse from utils import load_hyperparam, convert_normal_parameter_to_int8, load_model from model.tokenize import Tokenizer from model.llama import * from generate import LmGeneration def multi_round_chat(args, lm_generation, keep_length_ratio=0.5): users = [] answers = [] while True: user_input = input("User: ") if user_input == 'clear': users = [] answers = [] print("开启新的一轮聊天/Start a new round of chat:") continue if user_input == 'exit': break input_str = '' for user, ans in zip(users, answers): input_str += 'User: ' + user + '\nBot: ' + ans + '\n' input_str += 'User: ' + user_input + '\nBot: ' if len(input_str) >= int(keep_length_ratio * args.seq_length): input_str = input_str[len(input_str) - int(keep_length_ratio * args.seq_length):] answer = lm_generation.generate(args, [input_str], cut_off='User:', cut_off_times=1)[0] answer = answer[len(input_str):] print("ChatLLaMa: " + answer.replace('User:', '')) users.append(user_input.rstrip(' ').rstrip('\n')) answers.append(answer.replace('User:', '').rstrip(' ').rstrip('\n')) if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--load_model_path", default=None, type=str, help="Path of the input model.") parser.add_argument("--prediction_path", type=str, default=None, help="Path of the prediction file.") parser.add_argument("--config_path", type=str, required=True, help="Path of the config file.") parser.add_argument("--seq_length", type=int, default=2048, help="Sequence length.") parser.add_argument("--world_size", type=int, default=1, help="the number of gpus.") parser.add_argument("--keep_length_ratio", type=float, default=0.5) parser.add_argument("--use_int8", action="store_true") parser.add_argument("--top_k", type=int, default=10) parser.add_argument("--top_p", type=float, default=1) parser.add_argument("--temperature", type=float, default=0.85) parser.add_argument("--repetition_penalty_range", type=int, default=1024) parser.add_argument("--repetition_penalty_slope", type=float, default=0) parser.add_argument("--repetition_penalty", type=float, default=1.15) parser.add_argument("--spm_model_path", default=None, type=str, help="Path of the sentence piece model.") args = parser.parse_args() args = load_hyperparam(args) args.batch_size = 1 args.tokenizer = Tokenizer(model_path=args.spm_model_path) args.vocab_size = args.tokenizer.sp_model.vocab_size() torch.set_default_tensor_type(torch.HalfTensor) model = LLaMa(args) torch.set_default_tensor_type(torch.FloatTensor) model = load_model(model, args.load_model_path) model.eval() # use multi-gpu tensor parallel if args.world_size > 1: import tensor_parallel as tp gpus = ["cuda:" + str(i) for i in range(args.world_size)] if args.use_int8: model = tp.tensor_parallel(model, gpus, delay_init=True) model = convert_normal_parameter_to_int8(model) else: model = tp.tensor_parallel(model, gpus) else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) lm_generation = LmGeneration(model, args.tokenizer) multi_round_chat(args, lm_generation, args.keep_length_ratio)