# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from dataclasses import dataclass, field import json import logging import pathlib from typing import Dict, Optional, Sequence import torch import transformers from torch.utils.data import Dataset from transformers import Trainer from fastchat import conversation as conversation_lib # TODO: import and use code from ../data/dataset.py IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" DEFAULT_EOS_TOKEN = "" DEFAULT_BOS_TOKEN = "" DEFAULT_UNK_TOKEN = "" @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="facebook/opt-125m") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = { key: value.cpu() for key, value in state_dict.items() } del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [ tokenized.input_ids[0] for tokenized in tokenized_list ] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def _mask_targets(target, tokenized_lens, speakers, header_len, s_ids): cur_idx = header_len tgt_len = target.shape[0] for tokenized_len, speaker, s_id in zip(tokenized_lens, speakers, s_ids): if cur_idx >= tgt_len: break elif cur_idx + tokenized_len < tgt_len: # Check whether the mask is applied to the correct position if not torch.equal(target[cur_idx + 2:cur_idx + tokenized_len], s_id[2:]): logging.warning("a sentence mismatches the corresponding piece " "in the conversation") if speaker == "human": target[cur_idx:cur_idx + tokenized_len] = IGNORE_INDEX cur_idx += tokenized_len def _add_speaker_and_signal(header, source, get_conversation=True): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" conversation = header unknown_role = "unknown" # use default unknown role roles = { "human": conversation_lib.default_conversation.roles[0], # human role "gpt": conversation_lib.default_conversation.roles[1], # gpt role } for sentence in source: sentence_from = sentence["from"].lower() sentence["value"] = ( BEGIN_SIGNAL + roles.get(sentence_from, unknown_role) + ": " + sentence["value"] + END_SIGNAL ) if get_conversation: conversation += sentence["value"] return conversation def preprocess( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: """ Given a list of sources, each is a conversation list. This transform: 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; 2. Concatenate conversations together; 3. Tokenize the concatenated conversation; 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. """ # add end signal and concatenate together conversations = [] header = f"{conversation_lib.default_conversation.system}\n\n" for source in sources: conversation = _add_speaker_and_signal(header, source) conversations.append(conversation) # tokenize conversations conversations_tokenized = _tokenize_fn(conversations, tokenizer) input_ids = conversations_tokenized["input_ids"] targets = copy.deepcopy(input_ids) header_len = _tokenize_fn([header], tokenizer)["input_ids_lens"][0] for target, source in zip(targets, sources): tokenized_sentence = _tokenize_fn([s["value"] for s in source], tokenizer) tokenized_lens = tokenized_sentence["input_ids_lens"] # Currently, "###" is tokenized into 2 tokens in the whole conversation, # and 1 token in a single sentence, so we do not need to use the line below. # tokenized_lens = [l-1 for l in tokenized_lens] speakers = [sentence["from"] for sentence in source] ids = tokenized_sentence["input_ids"] _mask_targets(target, tokenized_lens, speakers, header_len, ids) return dict(input_ids=input_ids, labels=targets) class SupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer): super(SupervisedDataset, self).__init__() logging.warning("Loading data...") list_data_dict = json.load(open(data_path, "r")) logging.warning("Formatting inputs...") sources = [example["conversations"] for example in list_data_dict] data_dict = preprocess(sources, tokenizer) self.input_ids = data_dict["input_ids"] self.labels = data_dict["labels"] def __len__(self): return len(self.input_ids) def __getitem__(self, i) -> Dict[str, torch.Tensor]: return dict(input_ids=self.input_ids[i], labels=self.labels[i]) class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer): super(LazySupervisedDataset, self).__init__() logging.warning("Loading data...") list_data_dict = json.load(open(data_path, "r")) logging.warning("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.list_data_dict = list_data_dict def __len__(self): return len(self.list_data_dict) def __getitem__(self, i) -> Dict[str, torch.Tensor]: sources = self.list_data_dict[i] if isinstance(i, int): sources = [sources] data_dict = preprocess( copy.deepcopy([e["conversations"] for e in sources]), self.tokenizer) if isinstance(i, int): data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) return data_dict @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) return dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: """Make dataset and collator for supervised fine-tuning.""" dataset_cls = (LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset) train_dataset = dataset_cls(tokenizer=tokenizer, data_path=data_args.data_path) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) def train(): parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model = transformers.LlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, ) if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), tokenizer=tokenizer, model=model, ) if "llama" in model_args.model_name_or_path: tokenizer.add_special_tokens({ "eos_token": DEFAULT_EOS_TOKEN, "bos_token": DEFAULT_BOS_TOKEN, "unk_token": DEFAULT_UNK_TOKEN, }) data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): trainer.train(resume_from_checkpoint=True) else: trainer.train() trainer.save_state() safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) if __name__ == "__main__": train()