Commit cc338b7c authored by zhaoying1's avatar zhaoying1
Browse files

llama_fastchat_pytorch

parents
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Mask2Former
## Overview
The Mask2Former model was proposed in [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. Mask2Former is a unified framework for panoptic, instance and semantic segmentation and features significant performance and efficiency improvements over [MaskFormer](maskformer).
The abstract from the paper is the following:
*Image segmentation groups pixels with different semantics, e.g., category or instance membership. Each choice
of semantics defines a task. While only the semantics of each task differ, current research focuses on designing specialized architectures for each task. We present Masked-attention Mask Transformer (Mask2Former), a new architecture capable of addressing any image segmentation task (panoptic, instance or semantic). Its key components include masked attention, which extracts localized features by constraining cross-attention within predicted mask regions. In addition to reducing the research effort by at least three times, it outperforms the best specialized architectures by a significant margin on four popular datasets. Most notably, Mask2Former sets a new state-of-the-art for panoptic segmentation (57.8 PQ on COCO), instance segmentation (50.1 AP on COCO) and semantic segmentation (57.7 mIoU on ADE20K).*
Tips:
- Mask2Former uses the same preprocessing and postprocessing steps as [MaskFormer](maskformer). Use [`Mask2FormerImageProcessor`] or [`AutoImageProcessor`] to prepare images and optional targets for the model.
- To get the final segmentation, depending on the task, you can call [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or [`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or [`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`]. All three tasks can be solved using [`Mask2FormerForUniversalSegmentation`] output, panoptic segmentation accepts an optional `label_ids_to_fuse` argument to fuse instances of the target object/s (e.g. sky) together.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mask2former_architecture.jpg" alt="drawing" width="600"/>
<small> Mask2Former architecture. Taken from the <a href="https://arxiv.org/abs/2112.01527">original paper.</a> </small>
This model was contributed by [Shivalika Singh](https://huggingface.co/shivi) and [Alara Dirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/facebookresearch/Mask2Former).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Mask2Former.
- Demo notebooks regarding inference + fine-tuning Mask2Former on custom data can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Mask2Former).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it.
The resource should ideally demonstrate something new instead of duplicating an existing resource.
## MaskFormer specific outputs
[[autodoc]] models.mask2former.modeling_mask2former.Mask2FormerModelOutput
[[autodoc]] models.mask2former.modeling_mask2former.Mask2FormerForUniversalSegmentationOutput
## Mask2FormerConfig
[[autodoc]] Mask2FormerConfig
## Mask2FormerModel
[[autodoc]] Mask2FormerModel
- forward
## Mask2FormerForUniversalSegmentation
[[autodoc]] Mask2FormerForUniversalSegmentation
- forward
## Mask2FormerImageProcessor
[[autodoc]] Mask2FormerImageProcessor
- preprocess
- encode_inputs
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
\ No newline at end of file
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MaskFormer
<Tip>
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
</Tip>
## Overview
The MaskFormer model was proposed in [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. MaskFormer addresses semantic segmentation with a mask classification paradigm instead of performing classic pixel-level classification.
The abstract from the paper is the following:
*Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solve both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.*
Tips:
- MaskFormer's Transformer decoder is identical to the decoder of [DETR](detr). During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help the model output the correct number of objects of each class. If you set the parameter `use_auxilary_loss` of [`MaskFormerConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
`get_num_masks` function inside in the `MaskFormerLoss` class of `modeling_maskformer.py`. When training on multiple nodes, this should be
set to the average number of target masks across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
- One can use [`MaskFormerImageProcessor`] to prepare images for the model and optional targets for the model.
- To get the final segmentation, depending on the task, you can call [`~MaskFormerImageProcessor.post_process_semantic_segmentation`] or [`~MaskFormerImageProcessor.post_process_panoptic_segmentation`]. Both tasks can be solved using [`MaskFormerForInstanceSegmentation`] output, panoptic segmentation accepts an optional `label_ids_to_fuse` argument to fuse instances of the target object/s (e.g. sky) together.
The figure below illustrates the architecture of MaskFormer. Taken from the [original paper](https://arxiv.org/abs/2107.06278).
<img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/maskformer_architecture.png"/>
This model was contributed by [francesco](https://huggingface.co/francesco). The original code can be found [here](https://github.com/facebookresearch/MaskFormer).
## Resources
<PipelineTag pipeline="image-segmentation"/>
- All notebooks that illustrate inference as well as fine-tuning on custom data with MaskFormer can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/MaskFormer).
## MaskFormer specific outputs
[[autodoc]] models.maskformer.modeling_maskformer.MaskFormerModelOutput
[[autodoc]] models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentationOutput
## MaskFormerConfig
[[autodoc]] MaskFormerConfig
## MaskFormerImageProcessor
[[autodoc]] MaskFormerImageProcessor
- preprocess
- encode_inputs
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## MaskFormerFeatureExtractor
[[autodoc]] MaskFormerFeatureExtractor
- __call__
- encode_inputs
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## MaskFormerModel
[[autodoc]] MaskFormerModel
- forward
## MaskFormerForInstanceSegmentation
[[autodoc]] MaskFormerForInstanceSegmentation
- forward
\ No newline at end of file
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MatCha
## Overview
MatCha has been proposed in the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662), from Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
The abstract of the paper states the following:
*Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.*
## Model description
MatCha is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct).
MatCha is a Visual Question Answering subset of `Pix2Struct` architecture. It renders the input question on the image and predicts the answer.
## Usage
Currently 6 checkpoints are available for MatCha:
- `google/matcha`: the base MatCha model, used to fine-tune MatCha on downstream tasks
- `google/matcha-chartqa`: MatCha model fine-tuned on ChartQA dataset. It can be used to answer questions about charts.
- `google/matcha-plotqa-v1`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots.
- `google/matcha-plotqa-v2`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots.
- `google/matcha-chart2text-statista`: MatCha model fine-tuned on Statista dataset.
- `google/matcha-chart2text-pew`: MatCha model fine-tuned on Pew dataset.
The models finetuned on `chart2text-pew` and `chart2text-statista` are more suited for summarization, whereas the models finetuned on `plotqa` and `chartqa` are more suited for question answering.
You can use these models as follows (example on a ChatQA dataset):
```python
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import requests
from PIL import Image
model = Pix2StructForConditionalGeneration.from_pretrained("google/matcha-chartqa").to(0)
processor = AutoProcessor.from_pretrained("google/matcha-chartqa")
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text="Is the sum of all 4 places greater than Laos?", return_tensors="pt").to(0)
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
## Fine-tuning
To fine-tune MatCha, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faste convergence:
```python
from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup
optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000)
```
\ No newline at end of file
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MBart and MBart-50
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=mbart">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-mbart-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/mbart-large-50-one-to-many-mmt">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
**DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) and assign
@patrickvonplaten
## Overview of MBart
The MBart model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan
Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual
corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete
sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only
on the encoder, decoder, or reconstructing parts of the text.
This model was contributed by [valhalla](https://huggingface.co/valhalla). The Authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/mbart)
### Training of MBart
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
keyword, and target text format passed with the `text_label` keyword argument.
- Supervised training
```python
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs)
```
- Generation
While generating the target text set the `decoder_start_token_id` to the target language id. The following
example shows how to translate English to Romanian using the *facebook/mbart-large-en-ro* model.
```python
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
>>> article = "UN Chief Says There Is No Military Solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Şeful ONU declară că nu există o soluţie militară în Siria"
```
## Overview of MBart-50
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extendeding
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
languages.
According to the abstract
*Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one
direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models
can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on
average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while
improving 9.3 BLEU on average over bilingual baselines from scratch.*
### Training of MBart-50
The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix
for both source and target text i.e the text format is `[lang_code] X [eos]`, where `lang_code` is source
language id for source text and target language id for target text, with `X` being the source or target text
respectively.
MBart-50 has its own tokenizer [`MBart50Tokenizer`].
- Supervised training
```python
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
model(**model_inputs) # forward pass
```
- Generation
To generate using the mBART-50 multilingual translation models, `eos_token_id` is used as the
`decoder_start_token_id` and the target language id is forced as the first generated token. To force the
target language id as the first generated token, pass the *forced_bos_token_id* parameter to the *generate* method.
The following example shows how to translate between Hindi to French and Arabic to English using the
*facebook/mbart-50-large-many-to-many* checkpoint.
```python
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."
# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."
```
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## MBartConfig
[[autodoc]] MBartConfig
## MBartTokenizer
[[autodoc]] MBartTokenizer
- build_inputs_with_special_tokens
## MBartTokenizerFast
[[autodoc]] MBartTokenizerFast
## MBart50Tokenizer
[[autodoc]] MBart50Tokenizer
## MBart50TokenizerFast
[[autodoc]] MBart50TokenizerFast
## MBartModel
[[autodoc]] MBartModel
## MBartForConditionalGeneration
[[autodoc]] MBartForConditionalGeneration
## MBartForQuestionAnswering
[[autodoc]] MBartForQuestionAnswering
## MBartForSequenceClassification
[[autodoc]] MBartForSequenceClassification
## MBartForCausalLM
[[autodoc]] MBartForCausalLM
- forward
## TFMBartModel
[[autodoc]] TFMBartModel
- call
## TFMBartForConditionalGeneration
[[autodoc]] TFMBartForConditionalGeneration
- call
## FlaxMBartModel
[[autodoc]] FlaxMBartModel
- __call__
- encode
- decode
## FlaxMBartForConditionalGeneration
[[autodoc]] FlaxMBartForConditionalGeneration
- __call__
- encode
- decode
## FlaxMBartForSequenceClassification
[[autodoc]] FlaxMBartForSequenceClassification
- __call__
- encode
- decode
## FlaxMBartForQuestionAnswering
[[autodoc]] FlaxMBartForQuestionAnswering
- __call__
- encode
- decode
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# M-CTC-T
## Overview
The M-CTC-T model was proposed in [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. The model is a 1B-param transformer encoder, with a CTC head over 8065 character labels and a language identification head over 60 language ID labels. It is trained on Common Voice (version 6.1, December 2020 release) and VoxPopuli. After training on Common Voice and VoxPopuli, the model is trained on Common Voice only. The labels are unnormalized character-level transcripts (punctuation and capitalization are not removed). The model takes as input Mel filterbank features from a 16Khz audio signal.
The abstract from the paper is the following:
*Semi-supervised learning through pseudo-labeling has become a staple of state-of-the-art monolingual
speech recognition systems. In this work, we extend pseudo-labeling to massively multilingual speech
recognition with 60 languages. We propose a simple pseudo-labeling recipe that works well even
with low-resource languages: train a supervised multilingual model, fine-tune it with semi-supervised
learning on a target language, generate pseudo-labels for that language, and train a final model using
pseudo-labels for all languages, either from scratch or by fine-tuning. Experiments on the labeled
Common Voice and unlabeled VoxPopuli datasets show that our recipe can yield a model with better
performance for many languages that also transfers well to LibriSpeech.*
This model was contributed by [cwkeam](https://huggingface.co/cwkeam). The original code can be found [here](https://github.com/flashlight/wav2letter/tree/main/recipes/mling_pl).
## Documentation resources
- [Automatic speech recognition task guide](../tasks/asr)
Tips:
- The PyTorch version of this model is only available in torch 1.9 and higher.
## MCTCTConfig
[[autodoc]] MCTCTConfig
## MCTCTFeatureExtractor
[[autodoc]] MCTCTFeatureExtractor
- __call__
## MCTCTProcessor
[[autodoc]] MCTCTProcessor
- __call__
- from_pretrained
- save_pretrained
- batch_decode
- decode
## MCTCTModel
[[autodoc]] MCTCTModel
- forward
## MCTCTForCTC
[[autodoc]] MCTCTForCTC
- forward
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MEGA
## Overview
The MEGA model was proposed in [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
MEGA proposes a new approach to self-attention with each encoder layer having a multi-headed exponential moving average in addition to a single head of standard dot-product attention, giving the attention mechanism
stronger positional biases. This allows MEGA to perform competitively to Transformers on standard benchmarks including LRA
while also having significantly fewer parameters. MEGA's compute efficiency allows it to scale to very long sequences, making it an
attractive option for long-document NLP tasks.
The abstract from the paper is the following:
*The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models. *
Tips:
- MEGA can perform quite well with relatively few parameters. See Appendix D in the MEGA paper for examples of architectural specs which perform well in various settings. If using MEGA as a decoder, be sure to set `bidirectional=False` to avoid errors with default bidirectional.
- Mega-chunk is a variant of mega that reduces time and spaces complexity from quadratic to linear. Utilize chunking with MegaConfiig.use_chunking and control chunk size with MegaConfig.chunk_size
This model was contributed by [mnaylor](https://huggingface.co/mnaylor).
The original code can be found [here](https://github.com/facebookresearch/mega).
Implementation Notes:
- The original implementation of MEGA had an inconsistent expectation of attention masks for padding and causal self-attention between the softmax attention and Laplace/squared ReLU method. This implementation addresses that inconsistency.
- The original implementation did not include token type embeddings; this implementation adds support for these, with the option controlled by MegaConfig.add_token_type_embeddings
## MegaConfig
[[autodoc]] MegaConfig
## MegaModel
[[autodoc]] MegaModel
- forward
## MegaForCausalLM
[[autodoc]] MegaForCausalLM
- forward
## MegaForMaskedLM
[[autodoc]] MegaForMaskedLM
- forward
## MegaForSequenceClassification
[[autodoc]] MegaForSequenceClassification
- forward
## MegaForMultipleChoice
[[autodoc]] MegaForMultipleChoice
- forward
## MegaForTokenClassification
[[autodoc]] MegaForTokenClassification
- forward
## MegaForQuestionAnswering
[[autodoc]] MegaForQuestionAnswering
- forward
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MegatronBERT
## Overview
The MegatronBERT model was proposed in [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
*Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain
15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline
that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance
the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9
billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in
BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we
achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA
accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy
of 89.4%).*
Tips:
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using:
BERT-345M-uncased:
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip
```
BERT-345M-cased:
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip
```
Once you have obtained the checkpoints from NVIDIA GPU Cloud (NGC), you have to convert them to a format that will
easily be loaded by Hugging Face Transformers and our port of the BERT code.
The following commands allow you to do the conversion. We assume that the folder `models/megatron_bert` contains
`megatron_bert_345m_v0_1_{cased, uncased}.zip` and that the commands are run from inside that folder:
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
```
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
```
This model was contributed by [jdemouth](https://huggingface.co/jdemouth). The original code can be found [here](https://github.com/NVIDIA/Megatron-LM). That repository contains a multi-GPU and multi-node implementation of the
Megatron Language models. In particular, it contains a hybrid model parallel approach using "tensor parallel" and
"pipeline parallel" techniques.
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## MegatronBertConfig
[[autodoc]] MegatronBertConfig
## MegatronBertModel
[[autodoc]] MegatronBertModel
- forward
## MegatronBertForMaskedLM
[[autodoc]] MegatronBertForMaskedLM
- forward
## MegatronBertForCausalLM
[[autodoc]] MegatronBertForCausalLM
- forward
## MegatronBertForNextSentencePrediction
[[autodoc]] MegatronBertForNextSentencePrediction
- forward
## MegatronBertForPreTraining
[[autodoc]] MegatronBertForPreTraining
- forward
## MegatronBertForSequenceClassification
[[autodoc]] MegatronBertForSequenceClassification
- forward
## MegatronBertForMultipleChoice
[[autodoc]] MegatronBertForMultipleChoice
- forward
## MegatronBertForTokenClassification
[[autodoc]] MegatronBertForTokenClassification
- forward
## MegatronBertForQuestionAnswering
[[autodoc]] MegatronBertForQuestionAnswering
- forward
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MegatronGPT2
## Overview
The MegatronGPT2 model was proposed in [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
*Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain
15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline
that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance
the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9
billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in
BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we
achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA
accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy
of 89.4%).*
Tips:
We have provided pretrained [GPT2-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).
Alternatively, you can directly download the checkpoints using:
```bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O
megatron_gpt2_345m_v0_0.zip
```
Once you have obtained the checkpoint from NVIDIA GPU Cloud (NGC), you have to convert it to a format that will easily
be loaded by Hugging Face Transformers GPT2 implementation.
The following command allows you to do the conversion. We assume that the folder `models/megatron_gpt2` contains
`megatron_gpt2_345m_v0_0.zip` and that the command is run from that folder:
```bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_gpt2_345m_v0_0.zip
```
This model was contributed by [jdemouth](https://huggingface.co/jdemouth). The original code can be found [here](https://github.com/NVIDIA/Megatron-LM). That repository contains a multi-GPU and multi-node implementation of the
Megatron Language models. In particular, it contains a hybrid model parallel approach using "tensor parallel" and
"pipeline parallel" techniques.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MGP-STR
## Overview
The MGP-STR model was proposed in [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. MGP-STR is a conceptually **simple** yet **powerful** vision Scene Text Recognition (STR) model, which is built upon the [Vision Transformer (ViT)](vit). To integrate linguistic knowledge, Multi-Granularity Prediction (MGP) strategy is proposed to inject information from the language modality into the model in an implicit way.
The abstract from the paper is the following:
*Scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this challenging problem, numerous innovative methods have been successively proposed and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet powerful vision STR model, which is built upon ViT and outperforms previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, i.e. , subword representations (BPE and WordPiece) widely-used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. The resultant algorithm (termed MGP-STR) is able to push the performance envelop of STR to an even higher level. Specifically, it achieves an average recognition accuracy of 93.35% on standard benchmarks.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mgp_str_architecture.png"
alt="drawing" width="600"/>
<small> MGP-STR architecture. Taken from the <a href="https://arxiv.org/abs/2209.03592">original paper</a>. </small>
Tips:
- MGP-STR is trained on two synthetic datasets [MJSynth]((http://www.robots.ox.ac.uk/~vgg/data/text/)) (MJ) and SynthText(http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST) without fine-tuning on other datasets. It achieves state-of-the-art results on six standard Latin scene text benchmarks, including 3 regular text datasets (IC13, SVT, IIIT) and 3 irregular ones (IC15, SVTP, CUTE).
- This model was contributed by [yuekun](https://huggingface.co/yuekun). The original code can be found [here](https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR).
## Inference
[`MgpstrModel`] accepts images as input and generates three types of predictions, which represent textual information at different granularities.
The three types of predictions are fused to give the final prediction result.
The [`ViTImageProcessor`] class is responsible for preprocessing the input image and
[`MgpstrTokenizer`] decodes the generated character tokens to the target string. The
[`MgpstrProcessor`] wraps [`ViTImageProcessor`] and [`MgpstrTokenizer`]
into a single instance to both extract the input features and decode the predicted token ids.
- Step-by-step Optical Character Recognition (OCR)
``` py
>>> from transformers import MgpstrProcessor, MgpstrForSceneTextRecognition
>>> import requests
>>> from PIL import Image
>>> processor = MgpstrProcessor.from_pretrained('alibaba-damo/mgp-str-base')
>>> model = MgpstrForSceneTextRecognition.from_pretrained('alibaba-damo/mgp-str-base')
>>> # load image from the IIIT-5k dataset
>>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(pixel_values)
>>> generated_text = processor.batch_decode(outputs.logits)['generated_text']
```
## MgpstrConfig
[[autodoc]] MgpstrConfig
## MgpstrTokenizer
[[autodoc]] MgpstrTokenizer
- save_vocabulary
## MgpstrProcessor
[[autodoc]] MgpstrProcessor
- __call__
- batch_decode
## MgpstrModel
[[autodoc]] MgpstrModel
- forward
## MgpstrForSceneTextRecognition
[[autodoc]] MgpstrForSceneTextRecognition
- forward
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# mLUKE
## Overview
The mLUKE model was proposed in [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. It's a multilingual extension
of the [LUKE model](https://arxiv.org/abs/2010.01057) trained on the basis of XLM-RoBERTa.
It is based on XLM-RoBERTa and adds entity embeddings, which helps improve performance on various downstream tasks
involving reasoning about entities such as named entity recognition, extractive question answering, relation
classification, cloze-style knowledge completion.
The abstract from the paper is the following:
*Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual
alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining
and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging
entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages
with entity representations and show the model consistently outperforms word-based pretrained models in various
cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity
representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a
multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual
knowledge more likely than using only word representations.*
One can directly plug in the weights of mLUKE into a LUKE model, like so:
```python
from transformers import LukeModel
model = LukeModel.from_pretrained("studio-ousia/mluke-base")
```
Note that mLUKE has its own tokenizer, [`MLukeTokenizer`]. You can initialize it as follows:
```python
from transformers import MLukeTokenizer
tokenizer = MLukeTokenizer.from_pretrained("studio-ousia/mluke-base")
```
As mLUKE's architecture is equivalent to that of LUKE, one can refer to [LUKE's documentation page](luke) for all
tips, code examples and notebooks.
This model was contributed by [ryo0634](https://huggingface.co/ryo0634). The original code can be found [here](https://github.com/studio-ousia/luke).
## MLukeTokenizer
[[autodoc]] MLukeTokenizer
- __call__
- save_vocabulary
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MobileBERT
## Overview
The MobileBERT model was proposed in [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. It's a bidirectional transformer based on the BERT model, which is compressed and accelerated using several
approaches.
The abstract from the paper is the following:
*Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds
of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot
be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating
the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to
various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while
equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE
model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is
4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the
natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms
latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of
90.0/79.2 (1.5/2.1 higher than BERT_BASE).*
Tips:
- MobileBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained
with a causal language modeling (CLM) objective are better in that regard.
This model was contributed by [vshampor](https://huggingface.co/vshampor). The original code can be found [here](https://github.com/google-research/mobilebert).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## MobileBertConfig
[[autodoc]] MobileBertConfig
## MobileBertTokenizer
[[autodoc]] MobileBertTokenizer
## MobileBertTokenizerFast
[[autodoc]] MobileBertTokenizerFast
## MobileBert specific outputs
[[autodoc]] models.mobilebert.modeling_mobilebert.MobileBertForPreTrainingOutput
[[autodoc]] models.mobilebert.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput
## MobileBertModel
[[autodoc]] MobileBertModel
- forward
## MobileBertForPreTraining
[[autodoc]] MobileBertForPreTraining
- forward
## MobileBertForMaskedLM
[[autodoc]] MobileBertForMaskedLM
- forward
## MobileBertForNextSentencePrediction
[[autodoc]] MobileBertForNextSentencePrediction
- forward
## MobileBertForSequenceClassification
[[autodoc]] MobileBertForSequenceClassification
- forward
## MobileBertForMultipleChoice
[[autodoc]] MobileBertForMultipleChoice
- forward
## MobileBertForTokenClassification
[[autodoc]] MobileBertForTokenClassification
- forward
## MobileBertForQuestionAnswering
[[autodoc]] MobileBertForQuestionAnswering
- forward
## TFMobileBertModel
[[autodoc]] TFMobileBertModel
- call
## TFMobileBertForPreTraining
[[autodoc]] TFMobileBertForPreTraining
- call
## TFMobileBertForMaskedLM
[[autodoc]] TFMobileBertForMaskedLM
- call
## TFMobileBertForNextSentencePrediction
[[autodoc]] TFMobileBertForNextSentencePrediction
- call
## TFMobileBertForSequenceClassification
[[autodoc]] TFMobileBertForSequenceClassification
- call
## TFMobileBertForMultipleChoice
[[autodoc]] TFMobileBertForMultipleChoice
- call
## TFMobileBertForTokenClassification
[[autodoc]] TFMobileBertForTokenClassification
- call
## TFMobileBertForQuestionAnswering
[[autodoc]] TFMobileBertForQuestionAnswering
- call
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MobileNet V1
## Overview
The MobileNet model was proposed in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
The abstract from the paper is the following:
*We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.*
Tips:
- The checkpoints are named **mobilenet\_v1\_*depth*\_*size***, for example **mobilenet\_v1\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on.
- Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32.
- One can use [`MobileNetV1ImageProcessor`] to prepare images for the model.
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0).
- The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV1Config`] with `tf_padding = False`.
Unsupported features:
- The [`MobileNetV1Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use a 7x7 average pooling layer with stride 2 instead of global pooling. For larger inputs, this gives a pooled output that is larger than 1x1 pixel. The HuggingFace implementation does not support this.
- It is currently not possible to specify an `output_stride`. For smaller output strides, the original model invokes dilated convolution to prevent the spatial resolution from being reduced further. The output stride of the HuggingFace model is always 32.
- The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights.
- It's common to extract the output from the pointwise layers at indices 5, 11, 12, 13 for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers.
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV1.
<PipelineTag pipeline="image-classification"/>
- [`MobileNetV1ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## MobileNetV1Config
[[autodoc]] MobileNetV1Config
## MobileNetV1FeatureExtractor
[[autodoc]] MobileNetV1FeatureExtractor
- preprocess
## MobileNetV1ImageProcessor
[[autodoc]] MobileNetV1ImageProcessor
- preprocess
## MobileNetV1Model
[[autodoc]] MobileNetV1Model
- forward
## MobileNetV1ForImageClassification
[[autodoc]] MobileNetV1ForImageClassification
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MobileNet V2
## Overview
The MobileNet model was proposed in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
The abstract from the paper is the following:
*In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.*
*The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters.*
Tips:
- The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on.
- Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32.
- One can use [`MobileNetV2ImageProcessor`] to prepare images for the model.
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0).
- The segmentation model uses a [DeepLabV3+](https://arxiv.org/abs/1802.02611) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/).
- The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV2Config`] with `tf_padding = False`.
Unsupported features:
- The [`MobileNetV2Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use an average pooling layer with a fixed 7x7 window and stride 1 instead of global pooling. For inputs that are larger than the recommended image size, this gives a pooled output that is larger than 1x1. The Hugging Face implementation does not support this.
- The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights.
- It's common to extract the output from the expansion layers at indices 10 and 13, as well as the output from the final 1x1 convolution layer, for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers.
- The DeepLabV3+ segmentation head does not use the final convolution layer from the backbone, but this layer gets computed anyway. There is currently no way to tell [`MobileNetV2Model`] up to which layer it should run.
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here for the main model](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) and [here for DeepLabV3+](https://github.com/tensorflow/models/tree/master/research/deeplab).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV2.
<PipelineTag pipeline="image-classification"/>
- [`MobileNetV2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
**Semantic segmentation**
- [Semantic segmentation task guide](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## MobileNetV2Config
[[autodoc]] MobileNetV2Config
## MobileNetV2FeatureExtractor
[[autodoc]] MobileNetV2FeatureExtractor
- preprocess
- post_process_semantic_segmentation
## MobileNetV2ImageProcessor
[[autodoc]] MobileNetV2ImageProcessor
- preprocess
- post_process_semantic_segmentation
## MobileNetV2Model
[[autodoc]] MobileNetV2Model
- forward
## MobileNetV2ForImageClassification
[[autodoc]] MobileNetV2ForImageClassification
- forward
## MobileNetV2ForSemanticSegmentation
[[autodoc]] MobileNetV2ForSemanticSegmentation
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MobileViT
## Overview
The MobileViT model was proposed in [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. MobileViT introduces a new layer that replaces local processing in convolutions with global processing using transformers.
The abstract from the paper is the following:
*Light-weight convolutional neural networks (CNNs) are the de-facto for mobile vision tasks. Their spatial inductive biases allow them to learn representations with fewer parameters across different vision tasks. However, these networks are spatially local. To learn global representations, self-attention-based vision trans-formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this paper, we ask the following question: is it possible to combine the strengths of CNNs and ViTs to build a light-weight and low latency network for mobile vision tasks? Towards this end, we introduce MobileViT, a light-weight and general-purpose vision transformer for mobile devices. MobileViT presents a different perspective for the global processing of information with transformers, i.e., transformers as convolutions. Our results show that MobileViT significantly outperforms CNN- and ViT-based networks across different tasks and datasets. On the ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about 6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3 (CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the MS-COCO object detection task, MobileViT is 5.7% more accurate than MobileNetv3 for a similar number of parameters.*
Tips:
- MobileViT is more like a CNN than a Transformer model. It does not work on sequence data but on batches of images. Unlike ViT, there are no embeddings. The backbone model outputs a feature map. You can follow [this tutorial](https://keras.io/examples/vision/mobilevit) for a lightweight introduction.
- One can use [`MobileViTImageProcessor`] to prepare images for the model. Note that if you do your own preprocessing, the pretrained checkpoints expect images to be in BGR pixel order (not RGB).
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes).
- The segmentation model uses a [DeepLabV3](https://arxiv.org/abs/1706.05587) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/).
- As the name suggests MobileViT was designed to be performant and efficient on mobile phones. The TensorFlow versions of the MobileViT models are fully compatible with [TensorFlow Lite](https://www.tensorflow.org/lite).
You can use the following code to convert a MobileViT checkpoint (be it image classification or semantic segmentation) to generate a
TensorFlow Lite model:
```py
from transformers import TFMobileViTForImageClassification
import tensorflow as tf
model_ckpt = "apple/mobilevit-xx-small"
model = TFMobileViTForImageClassification.from_pretrained(model_ckpt)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS,
tf.lite.OpsSet.SELECT_TF_OPS,
]
tflite_model = converter.convert()
tflite_filename = model_ckpt.split("/")[-1] + ".tflite"
with open(tflite_filename, "wb") as f:
f.write(tflite_model)
```
The resulting model will be just **about an MB** making it a good fit for mobile applications where resources and network
bandwidth can be constrained.
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The TensorFlow version of the model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code and weights can be found [here](https://github.com/apple/ml-cvnets).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileViT.
<PipelineTag pipeline="image-classification"/>
- [`MobileViTForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
**Semantic segmentation**
- [Semantic segmentation task guide](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## MobileViTConfig
[[autodoc]] MobileViTConfig
## MobileViTFeatureExtractor
[[autodoc]] MobileViTFeatureExtractor
- __call__
- post_process_semantic_segmentation
## MobileViTImageProcessor
[[autodoc]] MobileViTImageProcessor
- preprocess
- post_process_semantic_segmentation
## MobileViTModel
[[autodoc]] MobileViTModel
- forward
## MobileViTForImageClassification
[[autodoc]] MobileViTForImageClassification
- forward
## MobileViTForSemanticSegmentation
[[autodoc]] MobileViTForSemanticSegmentation
- forward
## TFMobileViTModel
[[autodoc]] TFMobileViTModel
- call
## TFMobileViTForImageClassification
[[autodoc]] TFMobileViTForImageClassification
- call
## TFMobileViTForSemanticSegmentation
[[autodoc]] TFMobileViTForSemanticSegmentation
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MPNet
## Overview
The MPNet model was proposed in [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of
masked language modeling and permuted language modeling for natural language understanding.
The abstract from the paper is the following:
*BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models.
Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for
pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and
thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel
pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the
dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position
information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in
XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of
down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large
margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g.,
BERT, XLNet, RoBERTa) under the same model setting.*
Tips:
- MPNet doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. just
separate your segments with the separation token `tokenizer.sep_token` (or `[sep]`).
The original code can be found [here](https://github.com/microsoft/MPNet).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## MPNetConfig
[[autodoc]] MPNetConfig
## MPNetTokenizer
[[autodoc]] MPNetTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## MPNetTokenizerFast
[[autodoc]] MPNetTokenizerFast
## MPNetModel
[[autodoc]] MPNetModel
- forward
## MPNetForMaskedLM
[[autodoc]] MPNetForMaskedLM
- forward
## MPNetForSequenceClassification
[[autodoc]] MPNetForSequenceClassification
- forward
## MPNetForMultipleChoice
[[autodoc]] MPNetForMultipleChoice
- forward
## MPNetForTokenClassification
[[autodoc]] MPNetForTokenClassification
- forward
## MPNetForQuestionAnswering
[[autodoc]] MPNetForQuestionAnswering
- forward
## TFMPNetModel
[[autodoc]] TFMPNetModel
- call
## TFMPNetForMaskedLM
[[autodoc]] TFMPNetForMaskedLM
- call
## TFMPNetForSequenceClassification
[[autodoc]] TFMPNetForSequenceClassification
- call
## TFMPNetForMultipleChoice
[[autodoc]] TFMPNetForMultipleChoice
- call
## TFMPNetForTokenClassification
[[autodoc]] TFMPNetForTokenClassification
- call
## TFMPNetForQuestionAnswering
[[autodoc]] TFMPNetForQuestionAnswering
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# mT5
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=mt5">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-mt5-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/mt5-small-finetuned-arxiv-cs-finetuned-arxiv-cs-full">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
The abstract from the paper is the following:
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a
generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model
checkpoints used in this work are publicly available.*
Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training.
Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
- [google/mt5-small](https://huggingface.co/google/mt5-small)
- [google/mt5-base](https://huggingface.co/google/mt5-base)
- [google/mt5-large](https://huggingface.co/google/mt5-large)
- [google/mt5-xl](https://huggingface.co/google/mt5-xl)
- [google/mt5-xxl](https://huggingface.co/google/mt5-xxl).
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be
found [here](https://github.com/google-research/multilingual-t5).
## Documentation resources
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## MT5Config
[[autodoc]] MT5Config
## MT5Tokenizer
[[autodoc]] MT5Tokenizer
See [`T5Tokenizer`] for all details.
## MT5TokenizerFast
[[autodoc]] MT5TokenizerFast
See [`T5TokenizerFast`] for all details.
## MT5Model
[[autodoc]] MT5Model
## MT5ForConditionalGeneration
[[autodoc]] MT5ForConditionalGeneration
## MT5EncoderModel
[[autodoc]] MT5EncoderModel
## TFMT5Model
[[autodoc]] TFMT5Model
## TFMT5ForConditionalGeneration
[[autodoc]] TFMT5ForConditionalGeneration
## TFMT5EncoderModel
[[autodoc]] TFMT5EncoderModel
## FlaxMT5Model
[[autodoc]] FlaxMT5Model
## FlaxMT5ForConditionalGeneration
[[autodoc]] FlaxMT5ForConditionalGeneration
## FlaxMT5EncoderModel
[[autodoc]] FlaxMT5EncoderModel
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MVP
## Overview
The MVP model was proposed in [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
According to the abstract,
- MVP follows a standard Transformer encoder-decoder architecture.
- MVP is supervised pre-trained using labeled datasets.
- MVP also has task-specific soft prompts to stimulate the model's capacity in performing a certain task.
- MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering.
Tips:
- We have released a series of models [here](https://huggingface.co/models?filter=mvp), including MVP, MVP with task-specific prompts, and multi-task pre-trained variants.
- If you want to use a model without prompts (standard Transformer), you can load it through `MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp')`.
- If you want to use a model with task-specific prompts, such as summarization, you can load it through `MvpForConditionalGeneration.from_pretrained('RUCAIBox/mvp-summarization')`.
- Our model supports lightweight prompt tuning following [Prefix-tuning](https://arxiv.org/abs/2101.00190) with method `set_lightweight_tuning()`.
This model was contributed by [Tianyi Tang](https://huggingface.co/StevenTang). The detailed information and instructions can be found [here](https://github.com/RUCAIBox/MVP).
## Examples
For summarization, it is an example to use MVP and MVP with summarization-specific prompts.
```python
>>> from transformers import MvpTokenizer, MvpForConditionalGeneration
>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
>>> model_with_prompt = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-summarization")
>>> inputs = tokenizer(
... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
... return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Why You Shouldn't Quit Your Job"]
>>> generated_ids = model_with_prompt.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
["Don't do it if these are your reasons"]
```
For data-to-text generation, it is an example to use MVP and multi-task pre-trained variants.
```python
>>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration
>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
>>> model_with_mtl = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text")
>>> inputs = tokenizer(
... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man",
... return_tensors="pt",
... )
>>> generated_ids = model.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Stan Lee created the character of Iron Man, a fictional superhero appearing in American comic']
>>> generated_ids = model_with_mtl.generate(**inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.']
```
For lightweight tuning, *i.e.*, fixing the model and only tuning prompts, you can load MVP with randomly initialized prompts or with task-specific prompts. Our code also supports Prefix-tuning with BART following the [original paper](https://arxiv.org/abs/2101.00190).
```python
>>> from transformers import MvpForConditionalGeneration
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp", use_prompt=True)
>>> # the number of trainable parameters (full tuning)
>>> sum(p.numel() for p in model.parameters() if p.requires_grad)
468116832
>>> # lightweight tuning with randomly initialized prompts
>>> model.set_lightweight_tuning()
>>> # the number of trainable parameters (lightweight tuning)
>>> sum(p.numel() for p in model.parameters() if p.requires_grad)
61823328
>>> # lightweight tuning with task-specific prompts
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-data-to-text")
>>> model.set_lightweight_tuning()
>>> # original lightweight Prefix-tuning
>>> model = MvpForConditionalGeneration.from_pretrained("facebook/bart-large", use_prompt=True)
>>> model.set_lightweight_tuning()
```
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
## MvpConfig
[[autodoc]] MvpConfig
## MvpTokenizer
[[autodoc]] MvpTokenizer
## MvpTokenizerFast
[[autodoc]] MvpTokenizerFast
## MvpModel
[[autodoc]] MvpModel
- forward
## MvpForConditionalGeneration
[[autodoc]] MvpForConditionalGeneration
- forward
## MvpForSequenceClassification
[[autodoc]] MvpForSequenceClassification
- forward
## MvpForQuestionAnswering
[[autodoc]] MvpForQuestionAnswering
- forward
## MvpForCausalLM
[[autodoc]] MvpForCausalLM
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Neighborhood Attention Transformer
## Overview
NAT was proposed in [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143)
by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
It is a hierarchical vision transformer based on Neighborhood Attention, a sliding-window self attention pattern.
The abstract from the paper is the following:
*We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision.
NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a
linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA's
receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike
Swin Transformer's Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package
with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin's WSA while using up to 25% less
memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA
that boosts image classification and downstream vision performance. Experimental results on NAT are competitive;
NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9%
ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size. *
Tips:
- One can use the [`AutoImageProcessor`] API to prepare images for the model.
- NAT can be used as a *backbone*. When `output_hidden_states = True`,
it will output both `hidden_states` and `reshaped_hidden_states`.
The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than
`(batch_size, height, width, num_channels)`.
Notes:
- NAT depends on [NATTEN](https://github.com/SHI-Labs/NATTEN/)'s implementation of Neighborhood Attention.
You can install it with pre-built wheels for Linux by referring to [shi-labs.com/natten](https://shi-labs.com/natten),
or build on your system by running `pip install natten`.
Note that the latter will likely take time to compile. NATTEN does not support Windows devices yet.
- Patch size of 4 is only supported at the moment.
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/neighborhood-attention-pattern.jpg"
alt="drawing" width="600"/>
<small> Neighborhood Attention compared to other attention patterns.
Taken from the <a href="https://arxiv.org/abs/2204.07143">original paper</a>.</small>
This model was contributed by [Ali Hassani](https://huggingface.co/alihassanijr).
The original code can be found [here](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with NAT.
<PipelineTag pipeline="image-classification"/>
- [`NatForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## NatConfig
[[autodoc]] NatConfig
## NatModel
[[autodoc]] NatModel
- forward
## NatForImageClassification
[[autodoc]] NatForImageClassification
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Nezha
## Overview
The Nezha model was proposed in [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei et al.
The abstract from the paper is the following:
*The pre-trained language models have achieved great successes in various natural language understanding (NLU) tasks
due to its capacity to capture the deep contextualized information in text by pre-training on large-scale corpora.
In this technical report, we present our practice of pre-training language models named NEZHA (NEural contextualiZed
representation for CHinese lAnguage understanding) on Chinese corpora and finetuning for the Chinese NLU tasks.
The current version of NEZHA is based on BERT with a collection of proven improvements, which include Functional
Relative Positional Encoding as an effective positional encoding scheme, Whole Word Masking strategy,
Mixed Precision Training and the LAMB Optimizer in training the models. The experimental results show that NEZHA
achieves the state-of-the-art performances when finetuned on several representative Chinese tasks, including
named entity recognition (People's Daily NER), sentence matching (LCQMC), Chinese sentiment classification (ChnSenti)
and natural language inference (XNLI).*
This model was contributed by [sijunhe](https://huggingface.co/sijunhe). The original code can be found [here](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/NEZHA-PyTorch).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## NezhaConfig
[[autodoc]] NezhaConfig
## NezhaModel
[[autodoc]] NezhaModel
- forward
## NezhaForPreTraining
[[autodoc]] NezhaForPreTraining
- forward
## NezhaForMaskedLM
[[autodoc]] NezhaForMaskedLM
- forward
## NezhaForNextSentencePrediction
[[autodoc]] NezhaForNextSentencePrediction
- forward
## NezhaForSequenceClassification
[[autodoc]] NezhaForSequenceClassification
- forward
## NezhaForMultipleChoice
[[autodoc]] NezhaForMultipleChoice
- forward
## NezhaForTokenClassification
[[autodoc]] NezhaForTokenClassification
- forward
## NezhaForQuestionAnswering
[[autodoc]] NezhaForQuestionAnswering
- forward
\ No newline at end of file
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# NLLB-MOE
## Overview
The NLLB model was presented in [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by Marta R. Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula,
Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews,
Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
The abstract of the paper is the following:
*Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today.
However, such efforts have coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource languages. What does it take to break the
200 language barrier while ensuring safe, high quality results, all while keeping ethical considerations in mind? In No Language Left Behind, we took on this challenge by
first contextualizing the need for low-resource language translation support through exploratory interviews with native speakers. Then, we created datasets and models aimed
at narrowing the performance gap between low and high-resource languages. More specifically, we developed a conditional compute model based on Sparsely Gated Mixture of
Experts that is trained on data obtained with novel and effective data mining techniques tailored for low-resource languages. We propose multiple architectural and training
improvements to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000 different translation directions using
a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a universal translation system.*
Tips:
- M2M100ForConditionalGeneration is the base model for both NLLB and NLLB MoE
- The NLLB-MoE is very similar to the NLLB model, but it's feed forward layer is based on the implementation of SwitchTransformers.
- The tokenizer is the same as the NLLB models.
This model was contributed by [Arthur Zucker](https://huggingface.co/ArtZucker).
The original code can be found [here](https://github.com/facebookresearch/fairseq).
## Implementation differences with SwitchTransformers
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that blah blah blah blah.
In SwitchTransformers, once the masks are computed for each experts, we just index the current hidden_states with the routing mask, and feed the
correct tokens to the expert. However here, the implementation varies a lot as the fairseq repository used a different approach.
## Generating with NLLB-MoE
The avalable checkpoints requires around 350GB of storage. Make sure to use `accelerate` if you do not have enough RAM on your machine.
While generating the target text set the `forced_bos_token_id` to the target language id. The following
example shows how to translate English to French using the *facebook/nllb-200-distilled-600M* model.
Note that we're using the BCP-47 code for French `fra_Latn`. See [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200)
for the list of all BCP-47 in the Flores 200 dataset.
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-moe-54b")
>>> article = "Previously, Ring's CEO, Jamie Siminoff, remarked the company started when his doorbell wasn't audible from his shop in his garage."
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(
... **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["fra_Latn"], max_length=50
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Auparavant, le PDG de Ring, Jamie Siminoff, a fait remarquer que la société avait commencé lorsque sa sonnette n'était pas audible depuis son magasin dans son garage."
```
### Generating from any other language than English
English (`eng_Latn`) is set as the default language from which to translate. In order to specify that you'd like to translate from a different language,
you should specify the BCP-47 code in the `src_lang` keyword argument of the tokenizer initialization.
See example below for a translation from romanian to german:
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b", src_lang="ron_Latn")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-moe-54b")
>>> article = "Şeful ONU spune că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(
... **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"], max_length=30
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
```
## Documentation resources
- [Translation task guide](./tasks/translation)
- [Summarization task guide](./tasks/summarization)
## NllbMoeConfig
[[autodoc]] NllbMoeConfig
## NllbMoeTop2Router
[[autodoc]] NllbMoeTop2Router
- route_tokens
- forward
## NllbMoeSparseMLP
[[autodoc]] NllbMoeSparseMLP
- forward
## NllbMoeModel
[[autodoc]] NllbMoeModel
- forward
## NllbMoeForConditionalGeneration
[[autodoc]] NllbMoeForConditionalGeneration
- forward
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment