Commit 12d5cbac authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #1780 canceled with stages
.vscode
.git
.github
.venv
cache
data
docker
saves
hf_cache
output
.dockerignore
.gitattributes
.gitignore
# Note: actually we do not support .env, just for reference
# api
API_HOST=0.0.0.0
API_PORT=8000
API_KEY=
API_MODEL_NAME=gpt-3.5-turbo
FASTAPI_ROOT_PATH=
# general
DISABLE_VERSION_CHECK=
FORCE_CHECK_IMPORTS=
LLAMAFACTORY_VERBOSITY=
USE_MODELSCOPE_HUB=
RECORD_VRAM=
# torchrun
FORCE_TORCHRUN=
MASTER_ADDR=
MASTER_PORT=
NNODES=
RANK=
NPROC_PER_NODE=
# wandb
WANDB_DISABLED=
WANDB_PROJECT=huggingface
WANDB_API_KEY=
# gradio ui
GRADIO_SHARE=False
GRADIO_SERVER_NAME=0.0.0.0
GRADIO_SERVER_PORT=
GRADIO_ROOT_PATH=
# setup
ENABLE_SHORT_CONSOLE=1
# reserved (do not use)
LLAMABOARD_ENABLED=
LLAMABOARD_WORKDIR=
# Auto detect text files and perform LF normalization
* text=auto
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
# custom .gitignore
ms_cache/
hf_cache/
cache/
config/
saves/
output/
wandb/
cff-version: 1.2.0
date-released: 2024-03
message: "If you use this software, please cite it as below."
authors:
- family-names: "Zheng"
given-names: "Yaowei"
- family-names: "Zhang"
given-names: "Richong"
- family-names: "Zhang"
given-names: "Junhao"
- family-names: "Ye"
given-names: "Yanhan"
- family-names: "Luo"
given-names: "Zheyan"
- family-names: "Feng"
given-names: "Zhangchi"
- family-names: "Ma"
given-names: "Yongqiang"
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
url: "https://arxiv.org/abs/2403.13372"
preferred-citation:
type: conference-paper
conference:
name: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
authors:
- family-names: "Zheng"
given-names: "Yaowei"
- family-names: "Zhang"
given-names: "Richong"
- family-names: "Zhang"
given-names: "Junhao"
- family-names: "Ye"
given-names: "Yanhan"
- family-names: "Luo"
given-names: "Zheyan"
- family-names: "Feng"
given-names: "Zhangchi"
- family-names: "Ma"
given-names: "Yongqiang"
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
url: "https://arxiv.org/abs/2403.13372"
year: 2024
publisher: "Association for Computational Linguistics"
address: "Bangkok, Thailand"
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
include LICENSE requirements.txt
.PHONY: quality style test
check_dirs := scripts src tests setup.py
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
test:
CUDA_VISIBLE_DEVICES= pytest tests/
# Llama3.2
Llama 3.2支持12.8万个token的上下文长度,在图像识别和其他视觉理解任务上能够与OpenAI的GPT 4o-mini相媲美,其中3B计算量的模型方便用于边缘端部署,Llama 3.2 3B模型在IFEval评测中达到了Llama 3.1 8B的水平。
## 论文
`Open and Efficient Foundation Language Models`
- https://arxiv.org/pdf/2405.14458
## 模型结构
Llama 3.2继续沿用Decoder-only结构,支持大型上下文窗口(最多 128K 个标记),其GQA在推理过程提速比较明显。
<div align=center>
<img src="./doc/llama3.png"/>
</div>
## 算法原理
通过剪枝(Pruning)和知识蒸馏,从Llama 3.1的8B和70B分别获得Llama 3.2的1B和3B模型,实现了在边缘设备端高效运行的能力,在后期训练中,采用与Llama 3.1类似的流程,通过多轮对预训练模型的对齐,包括监督微调、拒绝采样和直接偏好优化,生成最终的对话模型,另外,开始支持11B和90B多模态模型。
<div align=center>
<img src="./doc/distillation.png"/>
</div>
## 环境配置
```
mv llama-factory-llama3.2_pytorch LLaMA-Factory-Llama3.2 # 去框架名后缀
```
### Docker(方法一)
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.2-py3.10
# <your IMAGE ID>为以上拉取的docker的镜像ID替换,本镜像为:83714c19d308
docker run -it --shm-size=64G -v $PWD/LLaMA-Factory-Llama3.2:/home/LLaMA-Factory-Llama3.2 -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name llama32 <your IMAGE ID> bash
cd /home/LLaMA-Factory-Llama3.2
pip install -r requirements.txt # requirements.txt
pip install -e ".[torch,metrics]" # 安装llamafactory-cli=0.9.1
```
### Dockerfile(方法二)
```
cd LLaMA-Factory-Llama3.2/docker
docker build --no-cache -t llama32:latest .
docker run --shm-size=64G --name llama32 -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v $PWD/../../LLaMA-Factory-Llama3.2:/home/LLaMA-Factory-Llama3.2 -it llama32 bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt。
# 在镜像里安装llamafactory-cli=0.9.1
cd /home/LLaMA-Factory-Llama3.2
pip install -e ".[torch,metrics]"
```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装:
- https://developer.hpccube.com/tool/
```
DTK驱动:dtk24.04.2
python:python3.10
torch:2.3.0
torchvision:0.18.1
torchaudio:2.1.2
triton:2.1.0
flash-attn:2.0.4
deepspeed:0.14.2
apex:1.3.0
xformers:0.0.25
```
`Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应。`
2、其它非特殊库参照requirements.txt安装
```
pip install -r requirements.txt # requirements.txt
pip install -e ".[torch,metrics]" # 安装llamafactory-cli=0.9.1
```
## 数据集
`identity``alpaca_en_demo`
数据集快速下载中心:[SCNet AIDatasets](http://113.200.138.88:18080/aidatasets)
项目中已提供用于试验训练的迷你数据集:[`identity`](./data/identity.json)[`alpaca_en_demo`](./data/alpaca_en_demo.json),训练数据目录结构如下:
```
/home/LLaMA-Factory-Llama3.2/data
├── identity.json
├── alpaca_en_demo.json
├── ...
```
用户自定义产品场景训练数据的制作方式请参照[`data/README`](./data/README.md)中的格式介绍,并更新[data/dataset_info](data/dataset_info.json)进行使用。例如微调数据集格式:
```
# 以下内容放入文件data.json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,dataset_info.json 中的数据集描述应为:
```
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
## 训练
### 单机多卡
```
# 微调
# 修改llama3_lora_sft.yaml中的model_name_or_path: meta-llama/Llama-3.2-3B-Instruct
cd /home/LLaMA-Factory-Llama3.2
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml #本README以Llama-3.2-3B-Instruct进行示例,其它llama模型可以此类推进行使用。
# 微调完成后,利用以下命令将微调结果与下载的原始预训练权重合并成最终权重进行发布:
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
更多资料可参考源项目的[`README_origin`](./README_origin.md)
## 推理
```
# 方法一:pytorch 推理
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
# 方法二:vllm 推理
python infer_vllm.py # 目前vllm官网发布的vllm=0.5.0暂未兼容llama3.2,待vllm兼容后,方可从光合开发者社区下载新的适配版本利用此命令进行vllm推理。
```
## result
`User: `
```
世界上效果最好的对话大模型是哪个?
```
`Assistant:`
```
目前,世界上效果最好的对话大模型是{{name}}。
```
### 精度
DCU与GPU精度一致,推理框架:pytorch。
## 应用场景
### 算法类别
`对话问答`
### 热点应用行业
`制造,广媒,金融,能源,医疗,家居,教育`
## 预训练权重
预训练权重快速下载中心:[SCNet AIModels](http://113.200.138.88:18080/aimodels) ,项目中的预训练权重可从快速下载通道下载:[Llama-3.2-3B-Instruct](http://113.200.138.88:18080/aimodels/meta-llama/Llama-3.2-3B-Instruct.git)
Hugging Face下载地址为:[Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
## 源码仓库及问题反馈
- http://developer.hpccube.com/codes/modelzoo/yolov10_pytorch.git
## 参考资料
- https://github.com/hiyouga/LLaMA-Factory.git
- https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"split": "the name of dataset split to be used. (optional, default: train)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"num_samples": "the number of samples in the dataset to be used. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"videos": "the column name in the dataset containing the videos inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
}
```
## Alpaca Format
### Supervised Fine-Tuning Dataset
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
The `system` column will be used as the system prompt if specified.
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### Pre-training Dataset
- [Example dataset](c4_demo.json)
In pre-training, only the `text` column will be used for model learning.
```json
[
{"text": "document"},
{"text": "document"}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### Preference Dataset
Preference datasets are used for reward modeling, DPO training, ORPO and SimPO training.
It requires a better response in `chosen` column and a worse response in `rejected` column.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
An additional column `kto_tag` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Image Dataset
An additional column `images` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
### Multimodal Video Dataset
An additional column `videos` is required. Please refer to the [sharegpt](#sharegpt-format) format for details.
## Sharegpt Format
### Supervised Fine-Tuning Dataset
- [Example dataset](glaive_toolcall_en_demo.json)
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
"value": "model response"
}
],
"system": "system prompt (optional)",
"tools": "tool description (optional)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### Pre-training Dataset
Not yet supported, please use the [alpaca](#alpaca-format) format.
### Preference Dataset
- [Example dataset](dpo_en_demo.json)
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
- [Example dataset](kto_en_demo.json)
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"kto_tag": "human feedback [true/false] (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"kto_tag": "kto_tag"
}
}
```
### Multimodal Image Dataset
- [Example dataset](mllm_demo.json)
Multimodal image datasets require a `images` column containing the paths to the input images.
The number of images should be identical to the `<image>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<image>human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"images": [
"image path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
}
```
### Multimodal Video Dataset
- [Example dataset](mllm_video_demo.json)
Multimodal video datasets require a `videos` column containing the paths to the input videos.
The number of videos should be identical to the `<video>` tokens in the conversations.
```json
[
{
"conversations": [
{
"from": "human",
"value": "<video>human instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"videos": [
"video path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"videos": "videos"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
```json
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**`dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
"ranking": "是否为偏好数据集(可选,默认:False)",
"subset": "数据集子集的名称(可选,默认:None)",
"split": "所使用的数据集切分(可选,默认:train)",
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
"num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
"columns(可选)": {
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
"query": "数据集代表请求的表头名称(默认:input)",
"response": "数据集代表回答的表头名称(默认:output)",
"history": "数据集代表历史对话的表头名称(默认:None)",
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
"system": "数据集代表系统提示的表头名称(默认:None)",
"tools": "数据集代表工具描述的表头名称(默认:None)",
"images": "数据集代表图像输入的表头名称(默认:None)",
"videos": "数据集代表视频输入的表头名称(默认:None)",
"chosen": "数据集代表更优回答的表头名称(默认:None)",
"rejected": "数据集代表更差回答的表头名称(默认:None)",
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
},
"tags(可选,用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名(默认:from)",
"content_tag": "消息中代表文本内容的键名(默认:value)",
"user_tag": "消息中代表用户的 role_tag(默认:human)",
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
}
}
```
## Alpaca 格式
### 指令监督微调数据集
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
如果指定,`system` 列对应的内容将被作为系统提示词。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### 预训练数据集
- [样例数据集](c4_demo.json)
在预训练时,只有 `text` 列中的内容会用于模型学习。
```json
[
{"text": "document"},
{"text": "document"}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### 偏好数据集
偏好数据集用于奖励模型训练、DPO 训练、ORPO 训练和 SimPO 训练。
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#sharegpt-格式)
### 多模态图像数据集
多模态图像数据集需要提供额外的 `images` 列。详情请参阅 [sharegpt](#sharegpt-格式)
### 多模态视频数据集
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)
## Sharegpt 格式
### 指令监督微调数据集
- [样例数据集](glaive_toolcall_zh_demo.json)
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "function_call",
"value": "工具参数"
},
{
"from": "observation",
"value": "工具结果"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"system": "系统提示词(选填)",
"tools": "工具描述(选填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### 预训练数据集
尚不支持,请使用 [alpaca](#alpaca-格式) 格式。
### 偏好数据集
- [样例数据集](dpo_zh_demo.json)
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
},
{
"from": "human",
"value": "人类指令"
}
],
"chosen": {
"from": "gpt",
"value": "优质回答"
},
"rejected": {
"from": "gpt",
"value": "劣质回答"
}
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
- [样例数据集](kto_en_demo.json)
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"kto_tag": "人类反馈 [true/false](必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"kto_tag": "kto_tag"
}
}
```
### 多模态图像数据集
- [样例数据集](mllm_demo.json)
多模态图像数据集需要额外添加一个 `images` 列,包含输入图像的路径。
注意图片的数量必须与文本中所有 `<image>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<image>人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"images": [
"图像路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
}
```
### 多模态视频数据集
- [样例数据集](mllm_video_demo.json)
多模态视频数据集需要额外添加一个 `videos` 列,包含输入视频的路径。
注意视频的数量必须与文本中所有 `<video>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<video>人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"videos": [
"视频路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"videos": "videos"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
```json
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "人类指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
This diff is collapsed.
This diff is collapsed.
import json
import os
import datasets
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "BELLE multiturn chat dataset."
_CITATION = """\
@article{belle2023exploring,
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases},
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
journal={arXiv preprint arXiv:2303.14742},
year={2023}
}
"""
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT)
_LICENSE = "gpl-3.0"
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT)
class BelleMultiturn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self):
features = datasets.Features(
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download(_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
def _generate_examples(self, filepath: str):
with open(filepath, "r", encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
conversations = []
prompt = data["instruction"].strip()
response = data["output"].strip()
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
query = prompt[human_idx + 6 : assist_idx].strip()
prompt = prompt[:human_idx].strip()
conversations.insert(0, {"from": "gpt", "value": response})
conversations.insert(0, {"from": "human", "value": query})
while prompt.rfind("Assistant:") != -1:
assist_idx = prompt.rfind("Assistant:")
human_idx = prompt.rfind("Human:")
if human_idx != -1:
old_query = prompt[human_idx + 6 : assist_idx].strip()
old_resp = prompt[assist_idx + 10 :].strip()
conversations.insert(0, {"from": "gpt", "value": old_resp})
conversations.insert(0, {"from": "human", "value": old_query})
else:
break
prompt = prompt[:human_idx].strip()
yield key, {"conversations": conversations}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment