# coding: utf-8 """ config dataclass used for inference """ import cv2 from numpy import ndarray from dataclasses import dataclass, field from typing import Literal, Tuple from .base_config import PrintableConfig, make_abs_path @dataclass(repr=False) # use repr from PrintableConfig class InferenceConfig(PrintableConfig): # MODEL CONFIG, NOT EXPORTED PARAMS models_config: str = make_abs_path('./models.yaml') # portrait animation config checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip # EXPORTED PARAMS flag_use_half_precision: bool = True flag_crop_driving_video: bool = False device_id: int = 0 flag_normalize_lip: bool = True flag_source_video_eye_retargeting: bool = False flag_video_editing_head_rotation: bool = False flag_eye_retargeting: bool = False flag_lip_retargeting: bool = False flag_stitching: bool = True flag_relative_motion: bool = True flag_pasteback: bool = True flag_do_crop: bool = True flag_do_rot: bool = True flag_force_cpu: bool = False flag_do_torch_compile: bool = False # NOT EXPORTED PARAMS lip_normalize_threshold: float = 0.03 # threshold for flag_normalize_lip source_video_eye_retargeting_threshold: float = 0.18 # threshold for eyes retargeting if the input is a source video driving_smooth_observation_variance: float = 1e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy anchor_frame: int = 0 # TO IMPLEMENT input_shape: Tuple[int, int] = (256, 256) # input shape output_format: Literal['mp4', 'gif'] = 'mp4' # output video format crf: int = 15 # crf for output video output_fps: int = 25 # default output fps mask_crop: ndarray = field(default_factory=lambda: cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)) size_gif: int = 256 # default gif size, TO IMPLEMENT source_max_dim: int = 1280 # the max dim of height and width of source image or video source_division: int = 2 # make sure the height and width of source image or video can be divided by this number