import torch import torch.nn as nn import gc from typing import Any, Dict, List, Optional, Tuple, Union from dataclasses import dataclass from diffusers.utils import BaseOutput, logging, scale_lora_layers, unscale_lora_layers, deprecate, USE_PEFT_BACKEND, is_torch_version from diffusers.utils.torch_utils import apply_freeu logger = logging.get_logger(__name__) # pylint: disable=invalid-name def seed_everything(seed=42): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @dataclass class UNet2DConditionOutput(BaseOutput): """ The output of [`UNet2DConditionModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.FloatTensor = None def forward_unet( self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None ) -> Union[UNet2DConditionOutput, Tuple]: r""" The [`UNet2DConditionModel`] forward method. Args: sample (`torch.Tensor`): The noisy input tensor with the following shape `(batch, channel, height, width)`. timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. class_labels (`torch.Tensor`, *optional*, defaults to `None`): Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed through the `self.time_embedding` layer to obtain the timestep embeddings. attention_mask (`torch.Tensor`, *optional*, defaults to `None`): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). added_cond_kwargs: (`dict`, *optional*): A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks. down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): A tuple of tensors that if specified are added to the residuals of down unet blocks. mid_block_additional_residual: (`torch.Tensor`, *optional*): A tensor that if specified is added to the residual of the middle unet block. down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) encoder_attention_mask (`torch.Tensor`): A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. torch.cuda.empty_cache() gc.collect() default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None for dim in sample.shape[-2:]: if dim % default_overall_up_factor != 0: # Forward upsample size to force interpolation output size. forward_upsample_size = True break # ensure attention_mask is a bias, and give it a singleton query_tokens dimension # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None: encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 0. center input if necessary if self.config.center_input_sample: sample = 2 * sample - 1.0 # 1. time t_emb = self.get_time_embed(sample=sample, timestep=timestep) emb = self.time_embedding(t_emb, timestep_cond) aug_emb = None class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) if class_emb is not None: if self.config.class_embeddings_concat: emb = torch.cat([emb, class_emb], dim=-1) else: emb = emb + class_emb aug_emb = self.get_aug_embed( emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs ) if self.config.addition_embed_type == "image_hint": aug_emb, hint = aug_emb sample = torch.cat([sample, hint], dim=1) emb = emb + aug_emb if aug_emb is not None else emb if self.time_embed_act is not None: emb = self.time_embed_act(emb) encoder_hidden_states = self.process_encoder_hidden_states( encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs ) # 2. pre-process sample = self.conv_in(sample) # 2.5 GLIGEN position net if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: cross_attention_kwargs = cross_attention_kwargs.copy() gligen_args = cross_attention_kwargs.pop("gligen") cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} # 3. down # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated # to the internal blocks and will raise deprecation warnings. this will be confusing for our users. if cross_attention_kwargs is not None: cross_attention_kwargs = cross_attention_kwargs.copy() lora_scale = cross_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets is_adapter = down_intrablock_additional_residuals is not None # maintain backward compatibility for legacy usage, where # T2I-Adapter and ControlNet both use down_block_additional_residuals arg # but can only use one or the other if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: deprecate( "T2I should not use down_block_additional_residuals", "1.3.0", "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", standard_warn=False, ) down_intrablock_additional_residuals = down_block_additional_residuals is_adapter = True down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: # For t2i-adapter CrossAttnDownBlock2D additional_residuals = {} if is_adapter and len(down_intrablock_additional_residuals) > 0: additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, **additional_residuals, ) else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb) if is_adapter and len(down_intrablock_additional_residuals) > 0: sample += down_intrablock_additional_residuals.pop(0) down_block_res_samples += res_samples if is_controlnet: new_down_block_res_samples = () for down_block_res_sample, down_block_additional_residual in zip( down_block_res_samples, down_block_additional_residuals ): down_block_res_sample = down_block_res_sample + down_block_additional_residual new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) down_block_res_samples = new_down_block_res_samples # 4. mid if self.mid_block is not None: if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: sample = self.mid_block( sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, encoder_attention_mask=encoder_attention_mask, ) else: sample = self.mid_block(sample, emb) # To support T2I-Adapter-XL if ( is_adapter and len(down_intrablock_additional_residuals) > 0 and sample.shape == down_intrablock_additional_residuals[0].shape ): sample += down_intrablock_additional_residuals.pop(0) if is_controlnet: sample = sample + mid_block_additional_residual # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets):] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, upsample_size=upsample_size, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, ) # 6. post-process if self.conv_norm_out: sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) return sample def chunked_forward_unet( self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, class_labels: Optional[torch.Tensor] = None, timestep_cond: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, mid_block_additional_residual: Optional[torch.Tensor] = None, down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[UNet2DConditionOutput, Tuple]: sample = torch.cat([forward_unet( self, sample[idx:idx + 1], timestep if not isinstance(timestep, torch.Tensor) or timestep.ndim == 0 else timestep[idx:idx + 1], encoder_hidden_states[idx:idx + 1], None if class_labels is None else class_labels[idx:idx + 1], None if timestep_cond is None else timestep_cond[idx:idx + 1], None if attention_mask is None else attention_mask[idx:idx + 1], None if cross_attention_kwargs is None else {k: v[idx:idx + 1] for k, v in cross_attention_kwargs.items()}, None if added_cond_kwargs is None else { k: v[idx:idx + 1] for k, v in added_cond_kwargs.items()}, None if down_block_additional_residuals is None else tuple( [item[idx:idx + 1] for item in down_block_additional_residuals]), None if mid_block_additional_residual is None else mid_block_additional_residual[idx:idx + 1], None if down_intrablock_additional_residuals is None else tuple( [item[idx:idx + 1] for item in down_intrablock_additional_residuals]), None if encoder_attention_mask is None else encoder_attention_mask[idx:idx + 1] ).cpu() for idx in range(len(sample))], dim=0).to(encoder_hidden_states.device) if not return_dict: return (sample,) return UNet2DConditionOutput(sample=sample) def forward_unet_wrapper(self): def _forward(*args, **kwargs): return chunked_forward_unet(self, *args, **kwargs) return _forward def forward_resnet(self, input_tensor: torch.Tensor, temb: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) if self.time_emb_proj is not None: if not self.skip_time_act: inplace = self.nonlinearity.inplace self.nonlinearity.inplace = False temb = self.nonlinearity(temb) self.nonlinearity.inplace = inplace temb = self.time_emb_proj(temb)[:, :, None, None] if self.upsample is not None: if temb is not None: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.upsample( self.nonlinearity( self.norm1( input_tensor)))) + temb)))) else: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.upsample( self.nonlinearity( self.norm1( input_tensor)))))))) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(self.upsample(input_tensor)) else: input_tensor = self.upsample(input_tensor) elif self.downsample is not None: if temb is not None: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.downsample( self.nonlinearity( self.norm1( input_tensor)))) + temb)))) else: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.downsample( self.nonlinearity( self.norm1( input_tensor)))))))) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(self.downsample(input_tensor)) else: input_tensor = self.downsample(input_tensor) else: if temb is not None: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.nonlinearity( self.norm1( input_tensor))) + temb)))) else: hidden_states = self.conv2( self.dropout( self.nonlinearity( self.norm2( self.conv1( self.nonlinearity( self.norm1( input_tensor))))))) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) return (input_tensor + hidden_states) / self.output_scale_factor def forward_resnet_wrapper(self): def _forward(*args, **kwargs): return forward_resnet(self, *args, **kwargs) return _forward def forward_upblock2d( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, upsample_size: Optional[int] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet in self.resnets: # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1].to(hidden_states.device) res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) del res_hidden_states if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def forward_upblock2d_wrapper(self): def _forward(*args, **kwargs): return forward_upblock2d(self, *args, **kwargs) return _forward def forward_crossattnupblock2d( self, hidden_states: torch.Tensor, res_hidden_states_tuple: Tuple[torch.Tensor, ...], temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") is_freeu_enabled = ( getattr(self, "s1", None) and getattr(self, "s2", None) and getattr(self, "b1", None) and getattr(self, "b2", None) ) for resnet, attn in zip(self.resnets, self.attentions): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1].to(hidden_states.device) res_hidden_states_tuple = res_hidden_states_tuple[:-1] # FreeU: Only operate on the first two stages if is_freeu_enabled: hidden_states, res_hidden_states = apply_freeu( self.resolution_idx, hidden_states, res_hidden_states, s1=self.s1, s2=self.s2, b1=self.b1, b2=self.b2, ) hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) del res_hidden_states if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def forward_crossattnupblock2d_wrapper(self): def _forward(*args, **kwargs): return forward_crossattnupblock2d(self, *args, **kwargs) return _forward def forward_downblock2d( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, *args, **kwargs ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) output_states = () for resnet in self.resnets: if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, use_reentrant=False ) else: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb ) else: hidden_states = resnet(hidden_states, temb) output_states = output_states + (hidden_states.cpu(),) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states.cpu(),) return hidden_states, output_states def forward_downblock2d_wrapper(self): def _forward(*args, **kwargs): return forward_downblock2d(self, *args, **kwargs) return _forward def forward_crossattndownblock2d( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, additional_residuals: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") output_states = () blocks = list(zip(self.resnets, self.attentions)) for i, (resnet, attn) in enumerate(blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, **ckpt_kwargs, ) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] else: hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # apply additional residuals to the output of the last pair of resnet and attention blocks if i == len(blocks) - 1 and additional_residuals is not None: hidden_states = hidden_states + additional_residuals output_states = output_states + (hidden_states.cpu(),) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states.cpu(),) return hidden_states, output_states def forward_crossattndownblock2d_wrapper(self): def _forward(*args, **kwargs): return forward_crossattndownblock2d(self, *args, **kwargs) return _forward def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output def forward_transformer_block( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.squeeze(1) else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states def forward_transformer_block_wrapper(self): def _forward(*args, **kwargs): return forward_transformer_block(self, *args, **kwargs) return _forward