Commit 9ff47a7e authored by mashun1's avatar mashun1
Browse files

latte

parents
Pipeline #792 canceled with stages
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!
import os
import math
import torch
import numpy as np
import torch.nn as nn
from einops import repeat
#################################################################################
# Unet Utils #
#################################################################################
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad():
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True,
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim).contiguous()
return embedding
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels)
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
# class HybridConditioner(nn.Module):
# def __init__(self, c_concat_config, c_crossattn_config):
# super().__init__()
# self.concat_conditioner = instantiate_from_config(c_concat_config)
# self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
# def forward(self, c_concat, c_crossattn):
# c_concat = self.concat_conditioner(c_concat)
# c_crossattn = self.crossattn_conditioner(c_crossattn)
# return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial ** 2) * c
model.total_ops += torch.DoubleTensor([matmul_ops])
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
\ No newline at end of file
#torch > 2.0.0
# torchvision == 0.16 --no-deps
# timm --no-deps
diffusers==0.24.0
accelerate
tensorboard
einops
transformers
av
scikit-image
decord
pandas
omegaconf
imageio==2.27.0
imageio-ffmpeg==0.4.9
pillow
#!/bin/bash
# export CUDA_VISIBLE_DEVICES=1
python sample/sample.py \
--config ./configs/ffs/ffs_sample.yaml \
--ckpt ./share_ckpts/ffs.pt \
--save_video_path ./test
\ No newline at end of file
#!/bin/bash
torchrun --nnodes=1 --nproc_per_node=2 sample/sample_ddp.py \
--config ./configs/ffs/ffs_sample.yaml \
--ckpt ./share_ckpts/ffs.pt \
--save_video_path ./test
# Copyright 2023 PixArt-Alpha Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
import inspect
import re
import urllib.parse as ul
from typing import Callable, List, Optional, Tuple, Union
import torch
import einops
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, Transformer2DModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import (
BACKENDS_MAPPING,
is_bs4_available,
is_ftfy_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import BaseOutput
from dataclasses import dataclass
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_bs4_available():
from bs4 import BeautifulSoup
if is_ftfy_available():
import ftfy
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import PixArtAlphaPipeline
>>> # You can replace the checkpoint id with "PixArt-alpha/PixArt-XL-2-512x512" too.
>>> pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
>>> # Enable memory optimizations.
>>> pipe.enable_model_cpu_offload()
>>> prompt = "A small cactus with a happy face in the Sahara desert."
>>> image = pipe(prompt).images[0]
```
"""
@dataclass
class VideoPipelineOutput(BaseOutput):
video: torch.Tensor
class VideoGenPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using PixArt-Alpha.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder. PixArt-Alpha uses
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
_optional_components = ["tokenizer", "text_encoder"]
model_cpu_offload_seq = "text_encoder->transformer->vae"
def __init__(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer2DModel,
scheduler: DPMSolverMultistepScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
def mask_text_embeddings(self, emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096
else:
masked_feature = emb * mask[:, None, :, None] # 1 120 4096
return masked_feature, emb.shape[2]
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
clean_caption: bool = False,
mask_feature: bool = True,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
PixArt-Alpha, this should be "".
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
whether to use classifier free guidance or not
num_images_per_prompt (`int`, *optional*, defaults to 1):
number of images that should be generated per prompt
device: (`torch.device`, *optional*):
torch device to place the resulting embeddings on
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
string.
clean_caption (bool, defaults to `False`):
If `True`, the function will preprocess and clean the provided caption before encoding.
mask_feature: (bool, defaults to `True`):
If `True`, the function will mask the text embeddings.
"""
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
if device is None:
device = self._execution_device
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# See Section 3.1. of the paper.
max_length = 120
if prompt_embeds is None:
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {max_length} tokens: {removed_text}"
)
attention_mask = text_inputs.attention_mask.to(device)
prompt_embeds_attention_mask = attention_mask
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
if self.text_encoder is not None:
dtype = self.text_encoder.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens = [negative_prompt] * batch_size
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
attention_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
else:
negative_prompt_embeds = None
# print(prompt_embeds.shape) # 1 120 4096
# print(negative_prompt_embeds.shape) # 1 120 4096
# Perform additional masking.
if mask_feature and not embeds_initially_provided:
prompt_embeds = prompt_embeds.unsqueeze(1)
masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
masked_negative_prompt_embeds = (
negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
)
print(masked_prompt_embeds.shape) # 1 120 4096 第二个维度会变
print(masked_negative_prompt_embeds.shape) # 1 120 4096 第二个维度会变
# import torch.nn.functional as F
# padding = (0, 0, 0, 113) # (左, 右, 下, 上)
# masked_prompt_embeds_ = F.pad(masked_prompt_embeds, padding, "constant", 0)
# masked_negative_prompt_embeds_ = F.pad(masked_negative_prompt_embeds, padding, "constant", 0)
# print(masked_prompt_embeds == masked_prompt_embeds_[:, :masked_negative_prompt_embeds.shape[1], ...])
return masked_prompt_embeds, masked_negative_prompt_embeds
# return masked_prompt_embeds_, masked_negative_prompt_embeds_
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt,
callback_steps,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
def _text_preprocessing(self, text, clean_caption=False):
if clean_caption and not is_bs4_available():
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if clean_caption and not is_ftfy_available():
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
logger.warn("Setting `clean_caption` to False...")
clean_caption = False
if not isinstance(text, (tuple, list)):
text = [text]
def process(text: str):
if clean_caption:
text = self._clean_caption(text)
text = self._clean_caption(text)
else:
text = text.lower().strip()
return text
return [process(t) for t in text]
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
def _clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# &quot;
caption = re.sub(r"&quot;?", "", caption)
# &amp
caption = re.sub(r"&amp", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = ftfy.fix_text(caption)
caption = html.unescape(html.unescape(caption))
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: str = "",
num_inference_steps: int = 20,
timesteps: List[int] = None,
guidance_scale: float = 4.5,
num_images_per_prompt: Optional[int] = 1,
video_length: Optional[int] = None,
height: Optional[int] = None,
width: Optional[int] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
clean_caption: bool = True,
mask_feature: bool = True,
enable_temporal_attentions: bool = True,
) -> Union[VideoPipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
height (`int`, *optional*, defaults to self.unet.config.sample_size):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size):
The width in pixels of the generated image.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
clean_caption (`bool`, *optional*, defaults to `True`):
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
be installed. If the dependencies are not installed, the embeddings will be created from the raw
prompt.
mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
# 1. Check inputs. Raise error if not correct
height = height or self.transformer.config.sample_size * self.vae_scale_factor
width = width or self.transformer.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt, height, width, negative_prompt, callback_steps, prompt_embeds, negative_prompt_embeds
)
# 2. Default height and width to transformer
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
clean_caption=clean_caption,
mask_feature=mask_feature,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latents.
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
video_length,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Prepare micro-conditions.
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
if self.transformer.config.sample_size == 128:
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}
# 7. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
current_timestep = t
if not torch.is_tensor(current_timestep):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = latent_model_input.device.type == "mps"
if isinstance(current_timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
elif len(current_timestep.shape) == 0:
current_timestep = current_timestep[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
latent_model_input,
encoder_hidden_states=prompt_embeds,
timestep=current_timestep,
added_cond_kwargs=added_cond_kwargs,
enable_temporal_attentions=enable_temporal_attentions,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
noise_pred = noise_pred.chunk(2, dim=1)[0]
else:
noise_pred = noise_pred
# compute previous image: x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# if not output_type == "latent":
# image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# else:
# image = latents
# if not output_type == "latent":
# image = self.image_processor.postprocess(image, output_type=output_type)
if not output_type == 'latents':
video = self.decode_latents(latents)
else:
video = latents
return VideoPipelineOutput(video=video)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return VideoPipelineOutput(video=video)
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / self.vae.config.scaling_factor * latents
latents = einops.rearrange(latents, "b c f h w -> (b f) c h w")
video = []
for frame_idx in range(latents.shape[0]):
video.append(self.vae.decode(
latents[frame_idx:frame_idx+1]).sample)
video = torch.cat(video)
video = einops.rearrange(video, "(b f) c h w -> b f h w c", f=video_length)
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().contiguous()
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
return video
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Sample new images from a pre-trained Latte.
"""
import os
import sys
try:
import utils
from diffusion import create_diffusion
from download import find_model
except:
sys.path.append(os.path.split(sys.path[0])[0])
import utils
from diffusion import create_diffusion
from download import find_model
import torch
import argparse
import torchvision
from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
import imageio
from omegaconf import OmegaConf
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def main(args):
# Setup PyTorch:
# torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# device = "cpu"
if args.ckpt is None:
assert args.model == "Latte-XL/2", "Only Latte-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
using_cfg = args.cfg_scale > 1.0
# Load model:
latent_size = args.image_size // 8
args.latent_size = latent_size
model = get_models(args).to(device)
if args.use_compile:
model = torch.compile(model)
# a pre-trained model or load a custom Latte checkpoint from train.py:
ckpt_path = args.ckpt
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
# vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device)
# text_encoder = TextEmbedder().to(device)
if args.use_fp16:
print('WARNING: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
# text_encoder.to(dtype=torch.float16)
# Labels to condition the model with (feel free to change):
# Create sampling noise:
if args.use_fp16:
z = torch.randn(1, args.num_frames, 4, latent_size, latent_size, dtype=torch.float16, device=device) # b c f h w
else:
z = torch.randn(1, args.num_frames, 4, latent_size, latent_size, device=device)
# Setup classifier-free guidance:
# z = torch.cat([z, z], 0)
if using_cfg:
z = torch.cat([z, z], 0)
y = torch.randint(0, args.num_classes, (1,), device=device)
y_null = torch.tensor([101] * 1, device=device)
y = torch.cat([y, y_null], dim=0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16)
sample_fn = model.forward_with_cfg
else:
sample_fn = model.forward
model_kwargs = dict(y=None, use_fp16=args.use_fp16)
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
print(samples.shape)
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
b, f, c, h, w = samples.shape
samples = rearrange(samples, 'b f c h w -> (b f) c h w')
samples = vae.decode(samples / 0.18215).sample
samples = rearrange(samples, '(b f) c h w -> b f c h w', b=b)
# Save and display images:
if not os.path.exists(args.save_video_path):
os.makedirs(args.save_video_path)
video_ = ((samples[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous()
video_save_path = os.path.join(args.save_video_path, 'sample' + '.mp4')
print(video_save_path)
imageio.mimwrite(video_save_path, video_, fps=8, quality=9)
print('save path {}'.format(args.save_video_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/ucf101/ucf101_sample.yaml")
parser.add_argument("--ckpt", type=str, default="")
parser.add_argument("--save_video_path", type=str, default="./sample_videos/")
args = parser.parse_args()
omega_conf = OmegaConf.load(args.config)
omega_conf.ckpt = args.ckpt
omega_conf.save_video_path = args.save_video_path
main(omega_conf)
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Samples a large number of images from a pre-trained Latte model using DDP.
Subsequently saves a .npz file that can be used to compute FVD and other
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations
For a simple single-GPU/CPU sampling script, see sample.py.
"""
import io
import os
import sys
import torch
sys.path.append(os.path.split(sys.path[0])[0])
import torch.distributed as dist
from download import find_model
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse
import imageio
from omegaconf import OmegaConf
from models import get_models
from einops import rearrange
def create_npz_from_sample_folder(sample_dir, num=50_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
"""
Run sampling.
"""
torch.backends.cuda.matmul.allow_tf32 = True # True: fast but may lead to some small numerical differences
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
if args.seed:
seed = args.seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
if args.ckpt is None:
assert args.model == "Latte-XL/2", "Only Latte-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
# Load model:
latent_size = args.image_size // 8
args.latent_size = latent_size
model = get_models(args).to(device)
if args.use_compile:
model = torch.compile(model)
# a pre-trained model or load a custom Latte checkpoint from train.py:
ckpt_path = args.ckpt
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
# vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
# vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="sd-vae-ft-ema").to(device)
if args.use_fp16:
print('WARNING: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
# text_encoder.to(dtype=torch.float16)
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0"
using_cfg = args.cfg_scale > 1.0
# Create folder to save samples:
# model_string_name = args.model.replace("/", "-")
# ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained"
# folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \
# f"cfg-{args.cfg_scale}-seed-{args.seed}"
# sample_folder_dir = f"{args.sample_dir}/{folder_name}"
sample_folder_dir = args.save_video_path
if args.seed:
sample_folder_dir = args.save_video_path + '-seed-' + str(args.seed)
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .mp4 samples at {sample_folder_dir}")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(args.num_fvd_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Sample inputs:
if args.use_fp16:
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, dtype=torch.float16, device=device)
else:
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, device=device)
# Setup classifier-free guidance:
if using_cfg:
z = torch.cat([z, z], 0)
y = torch.randint(0, args.num_classes, (n,), device=device)
y_null = torch.tensor([101] * n, device=device)
y = torch.cat([y, y_null], dim=0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16)
sample_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=None, use_fp16=args.use_fp16)
sample_fn = model.forward
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device
)
if using_cfg:
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
b, f, c, h, w = samples.shape
samples = rearrange(samples, 'b f c h w -> (b f) c h w')
samples = vae.decode(samples / 0.18215).sample
samples = rearrange(samples, '(b f) c h w -> b f c h w', b=b)
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
sample = ((sample * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous()
index = i * dist.get_world_size() + rank + total
# Image.fromarray(sample).save(f"{sample_folder_dir}/{index:04d}.png")
sample_save_path = f"{sample_folder_dir}/{index:04d}.mp4"
imageio.mimwrite(sample_save_path, sample, fps=8, quality=9)
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
# if rank == 0:
# create_npz_from_sample_folder(sample_folder_dir, args.num_fvd_samples)
# print("Done.")
# dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
parser.add_argument("--ckpt", type=str, default="")
parser.add_argument("--save_video_path", type=str, default="./sample_videos/")
parser.add_argument("--save_ceph", default=False, action='store_true')
args = parser.parse_args()
omega_conf = OmegaConf.load(args.config)
omega_conf.ckpt = args.ckpt
omega_conf.save_video_path = args.save_video_path
omega_conf.save_ceph = args.save_ceph
main(omega_conf)
\ No newline at end of file
import os
import torch
import argparse
import torchvision
from diffusers.schedulers import (DDIMScheduler, DDPMScheduler, PNDMScheduler,
EulerDiscreteScheduler, DPMSolverMultistepScheduler,
HeunDiscreteScheduler, EulerAncestralDiscreteScheduler,
DEISMultistepScheduler, KDPM2AncestralDiscreteScheduler)
from diffusers.schedulers.scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from diffusers.models import AutoencoderKL
from omegaconf import OmegaConf
from transformers import T5EncoderModel, T5Tokenizer
import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from download import find_model
from pipeline_videogen import VideoGenPipeline
from models import get_models
from utils import save_video_grid
import imageio
from copy import deepcopy
def main(args):
# torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
transformer_model = get_models(args).to(device, dtype=torch.float16)
state_dict = find_model(args.ckpt)
transformer_model.load_state_dict(state_dict)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae", torch_dtype=torch.float16).to(device)
tokenizer = T5Tokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device)
# set eval mode
transformer_model.eval()
vae.eval()
text_encoder.eval()
if args.sample_method == 'DDIM':
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'EulerDiscrete':
scheduler = EulerDiscreteScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'DDPM':
scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'DPMSolverMultistep':
scheduler = DPMSolverMultistepScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'DPMSolverSinglestep':
scheduler = DPMSolverSinglestepScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'PNDM':
scheduler = PNDMScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'HeunDiscrete':
scheduler = HeunDiscreteScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'EulerAncestralDiscrete':
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'DEISMultistep':
scheduler = DEISMultistepScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
elif args.sample_method == 'KDPM2AncestralDiscrete':
scheduler = KDPM2AncestralDiscreteScheduler.from_pretrained(args.pretrained_model_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
variance_type=args.variance_type)
videogen_pipeline = VideoGenPipeline(vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer_model).to(device)
# videogen_pipeline.enable_xformers_memory_efficient_attention()
if not os.path.exists(args.save_img_path):
os.makedirs(args.save_img_path)
video_grids = []
for prompt in args.text_prompt:
print('Processing the ({}) prompt'.format(prompt))
videos = videogen_pipeline(prompt,
video_length=args.video_length,
height=args.image_size[0],
width=args.image_size[1],
num_inference_steps=args.num_sampling_steps,
guidance_scale=args.guidance_scale,
enable_temporal_attentions=args.enable_temporal_attentions,
num_images_per_prompt=1,
mask_feature=True,
).video
print(videos.shape)
try:
imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % args.run_time + 'webv-imageio.mp4', videos[0], fps=8, quality=9) # highest quality is 10, lowest is 0
except:
print('Error when saving {}'.format(prompt))
video_grids.append(videos)
video_grids = torch.cat(video_grids, dim=0)
print(video_grids.shape)
video_grids = save_video_grid(video_grids)
# torchvision.io.write_video(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=6)
imageio.mimwrite(args.save_img_path + '_%04d' % args.run_time + '-.mp4', video_grids, fps=8, quality=5)
print('save path {}'.format(args.save_img_path))
# save_videos_grid(video, f"./{prompt}.gif")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/wbv10m_train.yaml")
args = parser.parse_args()
main(OmegaConf.load(args.config))
#!/bin/bash
export CUDA_VISIBLE_DEVICES=7
python sample/sample.py \
--config ./configs/sky/sky_sample.yaml \
--ckpt ./share_ckpts/skytimelapse.pt \
--save_video_path ./test
\ No newline at end of file
#!/bin/bash
export CUDA_VISIBLE_DEVICES=6,7
torchrun --nnodes=1 --nproc_per_node=2 sample/sample_ddp.py \
--config ./configs/sky/sky_sample.yaml \
--ckpt ./share_ckpts/skytimelapse.pt \
--save_video_path ./test
python sample/sample_t2v.py --config configs/t2v/t2v_sample.yaml
\ No newline at end of file
#!/bin/bash
export CUDA_VISIBLE_DEVICES=7
python sample/sample.py \
--config ./configs/ucf101/taichi_sample.yaml \
--ckpt ./share_ckpts/taichi-hd.pt \
--save_video_path ./test
\ No newline at end of file
#!/bin/bash
export CUDA_VISIBLE_DEVICES=6,7
torchrun --nnodes=1 --nproc_per_node=2 sample/sample_ddp.py \
--config ./configs/taichi/taichi_sample.yaml \
--ckpt ./share_ckpts/taichi-hd.pt \
--save_video_path ./test \
#!/bin/bash
export CUDA_VISIBLE_DEVICES=7
python sample/sample.py \
--config ./configs/ucf101/ucf101_sample.yaml \
--ckpt ./share_ckpts/ucf101.pt \
--save_video_path ./test
\ No newline at end of file
#!/bin/bash
export CUDA_VISIBLE_DEVICES=6,7
torchrun --nnodes=1 --nproc_per_node=2 --master_port=29520 sample/sample_ddp.py \
--config ./configs/ucf101/ucf101_sample.yaml \
--ckpt ./share_ckpts/ucf101.pt \
--save_video_path ./test
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment