from PIL import Image import torch from transformers import AutoModelForCausalLM, AutoProcessor model_path = "../moonshotai/Kimi-VL-A3B-Thinking" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ) # If flash-attn has been installed, it is recommended to set torch_dtype=torch.bfloat16 and attn_implementation="flash_attention_2" # to save memory and speed up inference # model = AutoModelForCausalLM.from_pretrained( # model_path, # torch_dtype=torch.bfloat16, # device_map="auto", # trust_remote_code=True, # attn_implementation="flash_attention_2" # ) processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) image_paths = ["./Pic/arch.png", "./Pic/theory.png"] images = [Image.open(path) for path in image_paths] messages = [ { "role": "user", "content": [ {"type": "image", "image": image_path} for image_path in image_paths ] + [{"type": "text", "text": "Ocr this image"}], }, ] text = processor.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") inputs = processor(images=images, text=text, return_tensors="pt", padding=True, truncation=True).to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=2048) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(response)