# coding=utf-8 # Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Jiutian-MoE model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class JiutianConfig(PretrainedConfig): model_type = "jiutian" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=69120, hidden_size=5120, intermediate_size=13824, num_hidden_layers=40, num_attention_heads=40, num_key_value_heads=40, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, rms_norm_eps=1e-8, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=0, tie_word_embeddings=False, rope_theta=1e4, sliding_window=None, attention_dropout=0.0, num_experts_per_tok=2, num_local_experts=8, output_router_logits=False, router_aux_loss_coef=0.01, use_cope=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout self.num_experts_per_tok = num_experts_per_tok self.num_local_experts = num_local_experts self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef self.use_cope = use_cope super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )