"src/vscode:/vscode.git/clone" did not exist on "ffeae78b88186575e7d37539cae1a6d364d0b175"
Commit 4e516adc authored by ACzhangchao's avatar ACzhangchao
Browse files

Initial commit

parents
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bin.* filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zstandard filter=lfs diff=lfs merge=lfs -text
*.tfevents* filter=lfs diff=lfs merge=lfs -text
*.db* filter=lfs diff=lfs merge=lfs -text
*.ark* filter=lfs diff=lfs merge=lfs -text
**/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
**/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
**/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.gguf* filter=lfs diff=lfs merge=lfs -text
*.ggml filter=lfs diff=lfs merge=lfs -text
*.llamafile* filter=lfs diff=lfs merge=lfs -text
model-00001-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00002-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00003-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00004-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00005-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00006-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00007-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
model-00008-of-00008.safetensors filter=lfs diff=lfs merge=lfs -text
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# JIUTIAN-139MoE-Chat
## 环境配置
### Docker
拉取镜像,启动并进入容器
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
docker run -it --shm-size 80g --network=host --name=jiutian --privileged --device /dev/m--device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal/:/opt/hyhal/:ro image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10 /bin/bash
```
下载模型权重:[JIUTIAN-139MoE-Chat · 模型库 (modelscope.cn)](https://www.modelscope.cn/models/jiutian-ai/jiutian-139moe-chat/files)
```
#克隆项目
git clone http://developer.hpccube.com/codes/modelzoo/jiutian-139moe-chat.git
cd jiutian-139moe-chat
```
### 模型推理
```
python inference.py
```
### FastAPI调用模型
```
python app.py
```
测试容器内部是否能够正常调用:
另起一个终端,输入
```
curl -X POST "http://localhost:8000/predict/" -H "Content-Type: application/json" -d '{"text": "Please introduce the Great Wall."}'
```
成功调用会在终端生成内容:
```
{"response":"Human:\nPlease introduce the Great Wall.\n\nAssistant:\n The Great Wall of China is a series of fortifications built along the northern borders of China to protect against invasions and raids from various nomadic groups. It is one of the most famous landmarks in China and is also one of the largest construction projects in human history.\n\nThe Great Wall stretches"}
```
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
# 加载模型和分词器
model_id = "/workspace/jiutian/JIUTIAN-139MoE-chat" # 修改为你的模型路径
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,
trust_remote_code=True)
# 定义请求体
class ModelInput(BaseModel):
text: str
@app.post("/predict/")
async def predict(request: Request, model_input: ModelInput):
# 处理输入文本
text = "Human:\n" + model_input.text + "\n\nAssistant:\n"
# 分词和生成输出
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False, padding_side='left', truncation_side='left')
outputs = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.03, do_sample=False, eos_token_id=0)
# 解码输出
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return {"response": response_text}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
\ No newline at end of file
{
"_name_or_path": "/apps/sharedstorage/oceanstor-a800/sft/deepspeed_chat_moe/Pretrained_model/final_with_router/",
"activation": "silu",
"architectures": [
"JiutianForCausalLM"
],
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_jiutian.JiutianConfig",
"AutoModelForCausalLM": "modeling_jiutian.JiutianForCausalLM"
},
"bos_token_id": 1,
"eos_token_id": 0,
"hidden_act": "silu",
"hidden_size": 5120,
"initializer_range": 0.02,
"intermediate_size": 13824,
"max_position_embeddings": 4096,
"model_type": "jiutian",
"num_attention_heads": 40,
"num_experts_per_tok": 2,
"num_hidden_layers": 40,
"num_key_value_heads": 40,
"num_local_experts": 8,
"output_router_logits": true,
"rms_norm_eps": 1e-08,
"rope_theta": 10000.0,
"router_aux_loss_coef": 0.01,
"sliding_window": null,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.36.2",
"use_cache": true,
"use_cope": false,
"vocab_size": 69120
}
# coding=utf-8
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Jiutian-MoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class JiutianConfig(PretrainedConfig):
model_type = "jiutian"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=69120,
hidden_size=5120,
intermediate_size=13824,
num_hidden_layers=40,
num_attention_heads=40,
num_key_value_heads=40,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-8,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=0,
tie_word_embeddings=False,
rope_theta=1e4,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=2,
num_local_experts=8,
output_router_logits=False,
router_aux_loss_coef=0.01,
use_cope=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.use_cope = use_cope
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
{
"_from_model_config": true,
"bos_token_id": 1,
"eos_token_id": 0,
"transformers_version": "4.36.2"
}
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "/workspace/JIUTIAN-139MoE-chat"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
text = "Please introduce the Great Wall."
text = "Human:\n" + text + "\n\nAssistant:\n"
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False,padding_side='left',truncation_side='left')
outputs = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.03,do_sample=False,eos_token_id=0)
print(tokenizer.decode(outputs[0],skip_special_tokens=True))
\ No newline at end of file
{
"metadata": {
"total_size": 77756016640
},
"weight_map": {
"lm_head.weight": "model-00008-of-00008.safetensors",
"model.embed_tokens.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00008.safetensors",
"model.layers.0.input_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00008.safetensors",
"model.layers.1.input_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.10.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.10.input_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.11.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.11.input_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.12.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.12.input_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.13.input_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.4.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.4.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.4.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.5.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.5.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.5.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.6.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.6.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.6.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.7.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.7.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.experts.7.w3.weight": "model-00003-of-00008.safetensors",
"model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.14.input_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00008.safetensors",
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00008.safetensors",
"model.layers.15.input_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.16.block_sparse_moe.gate.weight": "model-00004-of-00008.safetensors",
"model.layers.16.input_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.17.block_sparse_moe.gate.weight": "model-00004-of-00008.safetensors",
"model.layers.17.input_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.18.block_sparse_moe.gate.weight": "model-00004-of-00008.safetensors",
"model.layers.18.input_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.4.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.4.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.4.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.5.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.5.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.5.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.6.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.6.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.6.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.7.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.7.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.experts.7.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.19.block_sparse_moe.gate.weight": "model-00004-of-00008.safetensors",
"model.layers.19.input_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00008.safetensors",
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00008.safetensors",
"model.layers.2.input_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00008.safetensors",
"model.layers.20.input_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.21.block_sparse_moe.gate.weight": "model-00005-of-00008.safetensors",
"model.layers.21.input_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.22.block_sparse_moe.gate.weight": "model-00005-of-00008.safetensors",
"model.layers.22.input_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.23.block_sparse_moe.gate.weight": "model-00005-of-00008.safetensors",
"model.layers.23.input_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.5.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.5.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.6.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.6.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.6.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.7.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.7.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.experts.7.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.24.block_sparse_moe.gate.weight": "model-00005-of-00008.safetensors",
"model.layers.24.input_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00008.safetensors",
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.4.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.4.w2.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.4.w3.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.5.w1.weight": "model-00005-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.25.block_sparse_moe.gate.weight": "model-00005-of-00008.safetensors",
"model.layers.25.input_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.26.block_sparse_moe.gate.weight": "model-00006-of-00008.safetensors",
"model.layers.26.input_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.27.block_sparse_moe.gate.weight": "model-00006-of-00008.safetensors",
"model.layers.27.input_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.28.block_sparse_moe.gate.weight": "model-00006-of-00008.safetensors",
"model.layers.28.input_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.28.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.7.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.experts.7.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.29.block_sparse_moe.gate.weight": "model-00006-of-00008.safetensors",
"model.layers.29.input_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.29.post_attention_layernorm.weight": "model-00006-of-00008.safetensors",
"model.layers.29.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.29.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.29.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.29.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00008.safetensors",
"model.layers.3.input_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00008.safetensors",
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.4.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.4.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.4.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.5.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.5.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.5.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.6.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.6.w2.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.6.w3.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.7.w1.weight": "model-00006-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.30.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.30.block_sparse_moe.gate.weight": "model-00006-of-00008.safetensors",
"model.layers.30.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.30.self_attn.k_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.30.self_attn.o_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.30.self_attn.q_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.30.self_attn.v_proj.weight": "model-00006-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.31.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.31.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.32.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.32.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.32.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.33.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.33.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.33.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.33.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.33.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.33.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.33.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.34.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.34.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.34.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.34.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.34.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.34.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.34.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.0.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.0.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.0.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.2.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.2.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.2.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.3.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.3.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.3.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.4.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.4.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.4.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.5.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.5.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.5.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.6.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.6.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.6.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.7.w1.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.7.w2.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.experts.7.w3.weight": "model-00007-of-00008.safetensors",
"model.layers.35.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.35.input_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.35.post_attention_layernorm.weight": "model-00007-of-00008.safetensors",
"model.layers.35.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.35.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.35.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.35.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.36.block_sparse_moe.gate.weight": "model-00007-of-00008.safetensors",
"model.layers.36.input_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.36.self_attn.k_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.36.self_attn.o_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.36.self_attn.q_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.36.self_attn.v_proj.weight": "model-00007-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.37.block_sparse_moe.gate.weight": "model-00008-of-00008.safetensors",
"model.layers.37.input_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.37.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.38.block_sparse_moe.gate.weight": "model-00008-of-00008.safetensors",
"model.layers.38.input_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.38.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.38.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.38.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.38.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.38.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.0.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.0.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.0.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.2.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.2.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.2.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.3.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.3.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.3.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.4.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.4.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.4.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.5.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.5.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.5.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.6.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.6.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.6.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.7.w1.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.7.w2.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.experts.7.w3.weight": "model-00008-of-00008.safetensors",
"model.layers.39.block_sparse_moe.gate.weight": "model-00008-of-00008.safetensors",
"model.layers.39.input_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.39.post_attention_layernorm.weight": "model-00008-of-00008.safetensors",
"model.layers.39.self_attn.k_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.39.self_attn.o_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.39.self_attn.q_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.39.self_attn.v_proj.weight": "model-00008-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00008.safetensors",
"model.layers.4.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.5.block_sparse_moe.gate.weight": "model-00002-of-00008.safetensors",
"model.layers.5.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.6.block_sparse_moe.gate.weight": "model-00002-of-00008.safetensors",
"model.layers.6.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.7.block_sparse_moe.gate.weight": "model-00002-of-00008.safetensors",
"model.layers.7.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.8.block_sparse_moe.gate.weight": "model-00002-of-00008.safetensors",
"model.layers.8.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.4.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.4.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.4.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.5.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.5.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.5.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.6.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.6.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.6.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.7.w1.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.7.w2.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.experts.7.w3.weight": "model-00002-of-00008.safetensors",
"model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00008.safetensors",
"model.layers.9.input_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00008.safetensors",
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00008.safetensors",
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00008.safetensors",
"model.norm.weight": "model-00008-of-00008.safetensors"
}
}
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Jiutian-MoE model."""
import inspect
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
)
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
from transformers.utils import (
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
)
from transformers.utils.import_utils import is_torch_fx_available
from .configuration_jiutian import JiutianConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
if not is_torch_greater_or_equal_than_1_13:
import torch.fx
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "JiutianConfig"
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
num_experts (`int`, *optional*):
Number of experts
Returns:
The auxiliary loss.
"""
if gate_logits is None:
return 0
if isinstance(gate_logits, tuple):
# cat along the layers?
compute_device = gate_logits[0].device
gate_logits = torch.cat([gate.to(compute_device) for gate in gate_logits], dim=0)
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
routing_weights = routing_weights.softmax(dim=-1)
# cast the expert indices to int64, otherwise one-hot encoding will fail
if selected_experts.dtype != torch.int64:
selected_experts = selected_experts.to(torch.int64)
if len(selected_experts.shape) == 2:
selected_experts = selected_experts.unsqueeze(2)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
# For a given token, determine if it was routed to a given expert.
expert_mask = torch.max(expert_mask, axis=-2).values
# cast to float32 otherwise mean will fail
expert_mask = expert_mask.to(torch.float32)
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)) * (num_experts**2)
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class JiutianRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class JiutianContextualRotaryEmbedding(nn.Module):
def __init__(
self,
head_num,
head_dim,
npos_max
):
super().__init__()
self.npos_max = npos_max
# 每个头都有独立的emb
self.pos_emb = nn.parameter.Parameter(
torch.zeros(head_num, head_dim, npos_max)
)
logger.info(f"ContextualRotaryEmbedding shape: {head_num}, {head_dim}, {npos_max}")
def forward(self, query, attn_logits) -> torch.Tensor:
gates = torch.sigmoid(attn_logits)
pos = gates.flip(-1).cumsum(dim=-1).flip(-1)
pos = pos.clamp(max=self.npos_max - 1)
pos_ceil = pos.ceil().long()
pos_floor = pos.floor().long()
# 仅最后两个维度会进行matmul
# [b, nq, s, nh] * [1(b), nq, nh, e] -> [b, nq, s, e]
logits_int = torch.matmul(query, self.pos_emb)
logits_ceil = logits_int.gather(-1, pos_ceil)
logits_floor = logits_int.gather(-1, pos_floor)
w = pos - pos_floor
return logits_ceil * w + logits_floor * (1 - w)
class JiutianRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class JiutianAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: JiutianConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
if config.use_cope:
self.cope = JiutianContextualRotaryEmbedding(
head_num=self.num_heads,
head_dim=self.head_dim,
npos_max=self.max_position_embeddings,
)
else:
self.rotary_emb = JiutianRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class JiutianFlashAttention2(JiutianAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(self.config.sliding_window, self.config.sliding_window),
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class JiutianBlockSparseTop2MLP(nn.Module):
def __init__(self, config: JiutianConfig, is_sub_expert: bool = False):
super().__init__()
self.ffn_dim = config.intermediate_size
if is_sub_expert:
assert self.ffn_dim % 2 == 0
self.ffn_dim //= 2
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class JiutianMoEDroplessTokenDispatcher:
"""
[]
"""
def __init__(
self, num_local_experts: int, num_experts_per_tok: int
) -> None:
"""
Initialize the zero token dropping router.
"""
self.hidden_shape = None
self.num_local_experts = num_local_experts
assert self.num_local_experts > 0, "Expected at least one expert"
self.router_topk = num_experts_per_tok
self.expert_mask = None
def get_expert_mask(self, device, dtype):
mask = torch.eye(self.num_local_experts,
device=device).to(dtype)
mask[2:, :2] = -1 * self.router_topk
mask[1, 1] = 0
mask[0, 1] = 1
logger.info(f"expert_mask: {mask}")
return mask
def token_permutation(
self, hidden_states: torch.Tensor, max_prob: torch.Tensor, max_ind: torch.Tensor
):
if self.expert_mask is None:
self.expert_mask = self.get_expert_mask(device=hidden_states.device, dtype=hidden_states.dtype)
self.hidden_shape = hidden_states.shape # [N, h]
# [N, E_2] -> [N, E_2, E]
mask = torch.nn.functional.one_hot(max_ind, num_classes=self.num_local_experts).to(hidden_states.dtype)
token_dispatcher = torch.matmul(self.expert_mask, mask.sum(dim=1).transpose(0, 1)) # [E, N]
token_dispatcher[token_dispatcher > 0.5] = 1
token_dispatcher[token_dispatcher < 0.5] = 0
# [N, 1, E_2] * [N, E_2, E] -> [N, 1, E] -> [N, E] -> [E, N]
score_dispather = torch.matmul(max_prob.unsqueeze(dim=1), mask).squeeze(dim=1).transpose(0, 1)
score_dispather *= token_dispatcher
score_dispather[0, :] = token_dispatcher[0, :].to(score_dispather.dtype)
# 获取各个expert被分配token数
# counter = token_dispatcher.sum(dim=1)
# tokens_per_expert[0] = counter[0]
# tokens_per_expert[2:] = counter[1:]
# tokens_per_expert = tokens_per_expert.cpu().to(torch.long)
tokens_per_expert = token_dispatcher.sum(dim=1).cpu().to(torch.long)
global_local_map = token_dispatcher.nonzero()[:, 1]
global_local_map = global_local_map.view(-1, 1).expand(-1, hidden_states.shape[-1])
permuted_local_hidden_states = torch.gather(hidden_states, 0, global_local_map)
local_probs = score_dispather.masked_select(token_dispatcher.bool()).view(-1, 1)
num_token_need = token_dispatcher.sum()
assert num_token_need == permuted_local_hidden_states.shape[0], f"num_token_need {num_token_need}, hidden_shape {self.hidden_shape}"
assert local_probs.shape[0] == permuted_local_hidden_states.shape[0]
return (
permuted_local_hidden_states,
tokens_per_expert,
local_probs,
global_local_map,
)
def token_unpermutation(
self,
hidden_states: torch.Tensor,
scores: torch.Tensor,
global_local_map: torch.Tensor = None
):
scores = scores.to(dtype=hidden_states.dtype)
unpermuted_local_hidden = hidden_states * scores
unpermuted_global_hidden = torch.zeros(
self.hidden_shape,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
output_total = unpermuted_global_hidden.scatter_add(
0, global_local_map, unpermuted_local_hidden
)
return output_total
Jiutian_ATTENTION_CLASSES = {
"eager": JiutianAttention,
"flash_attention_2": JiutianFlashAttention2,
}
class JiutianSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.token_dispatcher = JiutianMoEDroplessTokenDispatcher(
self.num_experts, self.top_k
)
self.experts = nn.ModuleList([JiutianBlockSparseTop2MLP(config), nn.Module()]) # expert 0 & 1
self.experts.extend([JiutianBlockSparseTop2MLP(config, is_sub_expert=True) for _ in range(2, self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" [YMJ] """
batch_size, sequence_length, hidden_dim = hidden_states.shape # [b, s, h]
hidden_states = hidden_states.view(-1, hidden_dim) # [b * s -> N, h]
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states) # [N, E]
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # [N, E_k]
# 重新将top的数值归一化
routing_weights = torch.softmax(routing_weights, dim=-1, dtype=torch.float).type_as(router_logits)
# 置换操作
(
dispatched_input,
tokens_per_expert,
routing_weights,
global_local_map,
) = self.token_dispatcher.token_permutation(hidden_states, routing_weights, selected_experts)
output_local = torch.zeros_like(dispatched_input)
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
# Insert zero at the begining for offset index's convenience
zero_tensor = torch.zeros(1, dtype=torch.long)
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
for expert_num, expert in enumerate(self.experts):
start = cumsum_num_tokens[expert_num]
end = cumsum_num_tokens[expert_num + 1]
if expert_num == 1:
continue
hidden = dispatched_input[start:end]
output = expert(hidden)
output_local[start:end] = output
final_hidden_states = self.token_dispatcher.token_unpermutation(
output_local, routing_weights, global_local_map
)
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class JiutianDecoderLayer(nn.Module):
def __init__(self, config: JiutianConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Jiutian_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.block_sparse_moe = JiutianSparseMoeBlock(config)
self.input_layernorm = JiutianRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = JiutianRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class JiutianPreTrainedModel(PreTrainedModel):
config_class = JiutianConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["JiutianDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class JiutianModel(JiutianPreTrainedModel):
def __init__(self, config: JiutianConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[JiutianDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = JiutianRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = 0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Jiutian-MoE. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
class JiutianForCausalLM(JiutianPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = JiutianModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
class JiutianForSequenceClassification(JiutianPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = JiutianModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
logits.device
)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
{
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": "<unk>",
"pad_token": "<unk>",
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for jiutian."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = "▁"
class JiutianTokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
spaces_between_special_tokens=False,
legacy=None,
add_prefix_space=True,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.legacy = legacy
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.add_prefix_space = add_prefix_space
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
spaces_between_special_tokens=spaces_between_special_tokens,
legacy=legacy,
add_prefix_space=add_prefix_space,
**kwargs,
)
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
prev_is_special = False
for i, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special and i != 0 and self.legacy:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
out_string += " "
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
File added
{
"add_bos_token": true,
"add_eos_token": false,
"add_prefix_space": true,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"auto_map": {
"AutoTokenizer": [
"tokenization_jiutian.JiutianTokenizer",
null
]
},
"bos_token": "<s>",
"clean_up_tokenization_spaces": false,
"eos_token": "<unk>",
"legacy": true,
"model_max_length": 1000000000000000019884624838656,
"pad_token": "<unk>",
"sp_model_kwargs": {},
"spaces_between_special_tokens": false,
"tokenizer_class": "JiutianTokenizer",
"trust_remote_code": true,
"unk_token": "<unk>"
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment