import torch import torch.nn as nn import torch.nn.functional as F from layers.Transformer_EncDec import Encoder, EncoderLayer from layers.SelfAttention_Family import ReformerLayer from layers.Embed import DataEmbedding class Model(nn.Module): """ Reformer with O(LlogL) complexity Paper link: https://openreview.net/forum?id=rkgNKkHtvB """ def __init__(self, configs, bucket_size=4, n_hashes=4): """ bucket_size: int, n_hashes: int, """ super(Model, self).__init__() self.pred_len = configs.pred_len self.seq_len = configs.seq_len if configs.channel_independence: self.enc_in = 1 self.dec_in = 1 self.c_out = 1 else: self.enc_in = configs.enc_in self.dec_in = configs.dec_in self.c_out = configs.c_out self.enc_embedding = DataEmbedding(self.enc_in, configs.d_model, configs.embed, configs.freq, configs.dropout) # Encoder self.encoder = Encoder( [ EncoderLayer( ReformerLayer(None, configs.d_model, configs.n_heads, bucket_size=bucket_size, n_hashes=n_hashes), configs.d_model, configs.d_ff, dropout=configs.dropout, activation=configs.activation ) for l in range(configs.e_layers) ], norm_layer=torch.nn.LayerNorm(configs.d_model) ) self.projection = nn.Linear( configs.d_model, configs.c_out, bias=True) def long_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): # add placeholder x_enc = torch.cat([x_enc, x_dec[:, -self.pred_len:, :]], dim=1) if x_mark_enc is not None: x_mark_enc = torch.cat( [x_mark_enc, x_mark_dec[:, -self.pred_len:, :]], dim=1) enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C] enc_out, attns = self.encoder(enc_out, attn_mask=None) dec_out = self.projection(enc_out) return dec_out # [B, L, D] def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None): dec_out = self.long_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec) return dec_out[:, -self.pred_len:, :] # [B, L, D]