{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "411c59b3-f177-4a10-8925-d931ce572eaa", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from diffusers import StableDiffusionAdapterPipeline, T2IAdapter, DDIMScheduler, AutoencoderKL\n", "from PIL import Image\n", "\n", "from ip_adapter import IPAdapter" ] }, { "cell_type": "code", "execution_count": null, "id": "6b6dc69c-192d-4d74-8b1e-f0d9ccfbdb49", "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "current_dir = os.getcwd()\n", "print(current_dir)\n", "\n", "base_model_path = f\"{current_dir}/pretrained_models/sd1.5/Realistic_Vision_v4.0_noVAE\"\n", "vae_model_path = f\"{current_dir}/pretrained_models/sd1.5/sd-vae-ft-mse\"\n", "image_encoder_path = f\"{current_dir}/pretrained_models/models/image_encoder/\"\n", "ip_ckpt = f\"{current_dir}/pretrained_models/models/ip-adapter_sd15.safetensors\"\n", "device = \"cuda\"" ] }, { "cell_type": "code", "execution_count": null, "id": "63ec542f-8474-4f38-9457-073425578073", "metadata": {}, "outputs": [], "source": [ "def image_grid(imgs, rows, cols):\n", " assert len(imgs) == rows*cols\n", "\n", " w, h = imgs[0].size\n", " grid = Image.new('RGB', size=(cols*w, rows*h))\n", " grid_w, grid_h = grid.size\n", " \n", " for i, img in enumerate(imgs):\n", " grid.paste(img, box=(i%cols*w, i//cols*h))\n", " return grid\n", "\n", "noise_scheduler = DDIMScheduler(\n", " num_train_timesteps=1000,\n", " beta_start=0.00085,\n", " beta_end=0.012,\n", " beta_schedule=\"scaled_linear\",\n", " clip_sample=False,\n", " set_alpha_to_one=False,\n", " steps_offset=1,\n", ")\n", "vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)" ] }, { "cell_type": "code", "execution_count": null, "id": "3849f9d0-5f68-4a49-9190-69dd50720cae", "metadata": {}, "outputs": [], "source": [ "# load t2i-adapter\n", "adapter_model_path = f\"{current_dir}/pretrained_models/sd1.5/diffusers/t2iadapter_depth_sd15v2/\"\n", "adapter = T2IAdapter.from_pretrained(adapter_model_path, torch_dtype=torch.float16)\n", "# load SD pipeline\n", "pipe = StableDiffusionAdapterPipeline.from_pretrained(\n", " base_model_path,\n", " adapter=adapter,\n", " torch_dtype=torch.float16,\n", " scheduler=noise_scheduler,\n", " vae=vae,\n", " feature_extractor=None,\n", " safety_checker=None\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "ec09e937-3904-4d8e-a559-9066502ded36", "metadata": {}, "outputs": [], "source": [ "# read image prompt\n", "image = Image.open(\"assets/images/river.png\")\n", "depth_map = Image.open(\"assets/structure_controls/depth2.png\")\n", "image_grid([image.resize((256, 256)), depth_map.resize((256, 256))], 1, 2)" ] }, { "cell_type": "code", "execution_count": null, "id": "81b1ab06-d3ed-4a7e-a356-9ddf1a2eecd6", "metadata": {}, "outputs": [], "source": [ "# load ip-adapter\n", "ip_model = IPAdapter(pipe, image_encoder_path, ip_ckpt, device)" ] }, { "cell_type": "code", "execution_count": null, "id": "b77f52de-a9e4-44e1-aeec-8165414f1273", "metadata": {}, "outputs": [], "source": [ "# generate image\n", "num_samples = 4\n", "depth_map = [depth_map] * num_samples # a bug of diffuser, we have to set the number by hard code\n", "images = ip_model.generate(pil_image=image, image=depth_map, num_samples=num_samples, num_inference_steps=50, seed=42)\n", "grid = image_grid(images, 1, num_samples)\n", "grid" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }