Commit 2f158a7d authored by ai_public's avatar ai_public
Browse files

ip-adapter

parents
Pipeline #1575 canceled with stages
jupyter
diffusers
\ No newline at end of file
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from ip_adapter.ip_adapter import ImageProjModel
from ip_adapter.utils import is_torch2_available
if is_torch2_available():
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
else:
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
# Dataset
class MyDataset(torch.utils.data.Dataset):
def __init__(self, json_file, tokenizer, size=512, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, image_root_path=""):
super().__init__()
self.tokenizer = tokenizer
self.size = size
self.i_drop_rate = i_drop_rate
self.t_drop_rate = t_drop_rate
self.ti_drop_rate = ti_drop_rate
self.image_root_path = image_root_path
self.data = json.load(open(json_file)) # list of dict: [{"image_file": "1.png", "text": "A dog"}]
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(self.size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
self.clip_image_processor = CLIPImageProcessor()
def __getitem__(self, idx):
item = self.data[idx]
text = item["text"]
image_file = item["image_file"]
# read image
raw_image = Image.open(os.path.join(self.image_root_path, image_file))
image = self.transform(raw_image.convert("RGB"))
clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
# drop
drop_image_embed = 0
rand_num = random.random()
if rand_num < self.i_drop_rate:
drop_image_embed = 1
elif rand_num < (self.i_drop_rate + self.t_drop_rate):
text = ""
elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
text = ""
drop_image_embed = 1
# get text and tokenize
text_input_ids = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
return {
"image": image,
"text_input_ids": text_input_ids,
"clip_image": clip_image,
"drop_image_embed": drop_image_embed
}
def __len__(self):
return len(self.data)
def collate_fn(data):
images = torch.stack([example["image"] for example in data])
text_input_ids = torch.cat([example["text_input_ids"] for example in data], dim=0)
clip_images = torch.cat([example["clip_image"] for example in data], dim=0)
drop_image_embeds = [example["drop_image_embed"] for example in data]
return {
"images": images,
"text_input_ids": text_input_ids,
"clip_images": clip_images,
"drop_image_embeds": drop_image_embeds
}
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
ip_tokens = self.image_proj_model(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
state_dict = torch.load(ckpt_path, map_location="cpu")
# Load state dict for image_proj_model and adapter_modules
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=True)
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
print(f"Successfully loaded weights from checkpoint {ckpt_path}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_ip_adapter_path",
type=str,
default=None,
help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",
)
parser.add_argument(
"--data_json_file",
type=str,
default=None,
required=True,
help="Training data",
)
parser.add_argument(
"--data_root_path",
type=str,
default="",
required=True,
help="Training data root path",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to CLIP image encoder",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-ip_adapter",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
#ip-adapter
image_proj_model = ImageProjModel(
cross_attention_dim=unet.config.cross_attention_dim,
clip_embeddings_dim=image_encoder.config.projection_dim,
clip_extra_context_tokens=4,
)
# init adapter modules
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
attn_procs[name].load_state_dict(weights)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules, args.pretrained_ip_adapter_path)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
#unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# optimizer
params_to_opt = itertools.chain(ip_adapter.image_proj_model.parameters(), ip_adapter.adapter_modules.parameters())
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
# dataloader
train_dataset = MyDataset(args.data_json_file, tokenizer=tokenizer, size=args.resolution, image_root_path=args.data_root_path)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Prepare everything with our `accelerator`.
ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)
global_step = 0
for epoch in range(0, args.num_train_epochs):
begin = time.perf_counter()
for step, batch in enumerate(train_dataloader):
load_data_time = time.perf_counter() - begin
with accelerator.accumulate(ip_adapter):
# Convert images to latent space
with torch.no_grad():
latents = vae.encode(batch["images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
with torch.no_grad():
image_embeds = image_encoder(batch["clip_images"].to(accelerator.device, dtype=weight_dtype)).image_embeds
image_embeds_ = []
for image_embed, drop_image_embed in zip(image_embeds, batch["drop_image_embeds"]):
if drop_image_embed == 1:
image_embeds_.append(torch.zeros_like(image_embed))
else:
image_embeds_.append(image_embed)
image_embeds = torch.stack(image_embeds_)
with torch.no_grad():
encoder_hidden_states = text_encoder(batch["text_input_ids"].to(accelerator.device))[0]
noise_pred = ip_adapter(noisy_latents, timesteps, encoder_hidden_states, image_embeds)
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean().item()
# Backpropagate
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
if accelerator.is_main_process:
print("Epoch {}, step {}, data_time: {}, time: {}, step_loss: {}".format(
epoch, step, load_data_time, time.perf_counter() - begin, avg_loss))
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
begin = time.perf_counter()
if __name__ == "__main__":
main()
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from ip_adapter.ip_adapter_faceid import MLPProjModel
from ip_adapter.utils import is_torch2_available
from ip_adapter.attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
# Dataset
class MyDataset(torch.utils.data.Dataset):
def __init__(self, json_file, tokenizer, size=512, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, image_root_path=""):
super().__init__()
self.tokenizer = tokenizer
self.size = size
self.i_drop_rate = i_drop_rate
self.t_drop_rate = t_drop_rate
self.ti_drop_rate = ti_drop_rate
self.image_root_path = image_root_path
self.data = json.load(open(json_file)) # list of dict: [{"image_file": "1.png", "id_embed_file": "faceid.bin"}]
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(self.size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def __getitem__(self, idx):
item = self.data[idx]
text = item["text"]
image_file = item["image_file"]
# read image
raw_image = Image.open(os.path.join(self.image_root_path, image_file))
image = self.transform(raw_image.convert("RGB"))
face_id_embed = torch.load(item["id_embed_file"], map_location="cpu")
face_id_embed = torch.from_numpy(face_id_embed)
# drop
drop_image_embed = 0
rand_num = random.random()
if rand_num < self.i_drop_rate:
drop_image_embed = 1
elif rand_num < (self.i_drop_rate + self.t_drop_rate):
text = ""
elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
text = ""
drop_image_embed = 1
if drop_image_embed:
face_id_embed = torch.zeros_like(face_id_embed)
# get text and tokenize
text_input_ids = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
return {
"image": image,
"text_input_ids": text_input_ids,
"face_id_embed": face_id_embed,
"drop_image_embed": drop_image_embed
}
def __len__(self):
return len(self.data)
def collate_fn(data):
images = torch.stack([example["image"] for example in data])
text_input_ids = torch.cat([example["text_input_ids"] for example in data], dim=0)
face_id_embed = torch.stack([example["face_id_embed"] for example in data])
drop_image_embeds = [example["drop_image_embed"] for example in data]
return {
"images": images,
"text_input_ids": text_input_ids,
"face_id_embed": face_id_embed,
"drop_image_embeds": drop_image_embeds
}
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
ip_tokens = self.image_proj_model(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
state_dict = torch.load(ckpt_path, map_location="cpu")
# Load state dict for image_proj_model and adapter_modules
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=True)
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
print(f"Successfully loaded weights from checkpoint {ckpt_path}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_ip_adapter_path",
type=str,
default=None,
help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",
)
parser.add_argument(
"--data_json_file",
type=str,
default=None,
required=True,
help="Training data",
)
parser.add_argument(
"--data_root_path",
type=str,
default="",
required=True,
help="Training data root path",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to CLIP image encoder",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-ip_adapter",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
# image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
#image_encoder.requires_grad_(False)
#ip-adapter
image_proj_model = MLPProjModel(
cross_attention_dim=unet.config.cross_attention_dim,
id_embeddings_dim=512,
num_tokens=4,
)
# init adapter modules
lora_rank = 128
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
else:
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = LoRAIPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank)
attn_procs[name].load_state_dict(weights, strict=False)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules, args.pretrained_ip_adapter_path)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
#unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
#image_encoder.to(accelerator.device, dtype=weight_dtype)
# optimizer
params_to_opt = itertools.chain(ip_adapter.image_proj_model.parameters(), ip_adapter.adapter_modules.parameters())
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
# dataloader
train_dataset = MyDataset(args.data_json_file, tokenizer=tokenizer, size=args.resolution, image_root_path=args.data_root_path)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Prepare everything with our `accelerator`.
ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)
global_step = 0
for epoch in range(0, args.num_train_epochs):
begin = time.perf_counter()
for step, batch in enumerate(train_dataloader):
load_data_time = time.perf_counter() - begin
with accelerator.accumulate(ip_adapter):
# Convert images to latent space
with torch.no_grad():
latents = vae.encode(batch["images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
image_embeds = batch["face_id_embed"].to(accelerator.device, dtype=weight_dtype)
with torch.no_grad():
encoder_hidden_states = text_encoder(batch["text_input_ids"].to(accelerator.device))[0]
noise_pred = ip_adapter(noisy_latents, timesteps, encoder_hidden_states, image_embeds)
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean().item()
# Backpropagate
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
if accelerator.is_main_process:
print("Epoch {}, step {}, data_time: {}, time: {}, step_loss: {}".format(
epoch, step, load_data_time, time.perf_counter() - begin, avg_loss))
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
begin = time.perf_counter()
if __name__ == "__main__":
main()
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from ip_adapter.resampler import Resampler
from ip_adapter.utils import is_torch2_available
if is_torch2_available():
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
else:
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
# Dataset
class MyDataset(torch.utils.data.Dataset):
def __init__(self, json_file, tokenizer, size=512, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, image_root_path=""):
super().__init__()
self.tokenizer = tokenizer
self.size = size
self.i_drop_rate = i_drop_rate
self.t_drop_rate = t_drop_rate
self.ti_drop_rate = ti_drop_rate
self.image_root_path = image_root_path
self.data = json.load(open(json_file)) # list of dict: [{"image_file": "1.png", "text": "A dog"}]
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(self.size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
self.clip_image_processor = CLIPImageProcessor()
def __getitem__(self, idx):
item = self.data[idx]
text = item["text"]
image_file = item["image_file"]
# read image
raw_image = Image.open(os.path.join(self.image_root_path, image_file))
image = self.transform(raw_image.convert("RGB"))
clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
# drop
drop_image_embed = 0
rand_num = random.random()
if rand_num < self.i_drop_rate:
drop_image_embed = 1
elif rand_num < (self.i_drop_rate + self.t_drop_rate):
text = ""
elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
text = ""
drop_image_embed = 1
# get text and tokenize
text_input_ids = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
return {
"image": image,
"text_input_ids": text_input_ids,
"clip_image": clip_image,
"drop_image_embed": drop_image_embed
}
def __len__(self):
return len(self.data)
def collate_fn(data):
images = torch.stack([example["image"] for example in data])
text_input_ids = torch.cat([example["text_input_ids"] for example in data], dim=0)
clip_images = torch.cat([example["clip_image"] for example in data], dim=0)
drop_image_embeds = [example["drop_image_embed"] for example in data]
return {
"images": images,
"text_input_ids": text_input_ids,
"clip_images": clip_images,
"drop_image_embeds": drop_image_embeds
}
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
ip_tokens = self.image_proj_model(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
state_dict = torch.load(ckpt_path, map_location="cpu")
# Check if 'latents' exists in both the saved state_dict and the current model's state_dict
strict_load_image_proj_model = True
if "latents" in state_dict["image_proj"] and "latents" in self.image_proj_model.state_dict():
# Check if the shapes are mismatched
if state_dict["image_proj"]["latents"].shape != self.image_proj_model.state_dict()["latents"].shape:
print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.")
print("Removing 'latents' from checkpoint and loading the rest of the weights.")
del state_dict["image_proj"]["latents"]
strict_load_image_proj_model = False
# Load state dict for image_proj_model and adapter_modules
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=True)
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
print(f"Successfully loaded weights from checkpoint {ckpt_path}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_ip_adapter_path",
type=str,
default=None,
help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",
)
parser.add_argument(
"--num_tokens",
type=int,
default=16,
help="Number of tokens to query from the CLIP image encoding.",
)
parser.add_argument(
"--data_json_file",
type=str,
default=None,
required=True,
help="Training data",
)
parser.add_argument(
"--data_root_path",
type=str,
default="",
required=True,
help="Training data root path",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to CLIP image encoder",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-ip_adapter",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
#ip-adapter-plus
image_proj_model = Resampler(
dim=unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=args.num_tokens,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
# init adapter modules
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=args.num_tokens)
attn_procs[name].load_state_dict(weights)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules, args.pretrained_ip_adapter_path)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
#unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# optimizer
params_to_opt = itertools.chain(ip_adapter.image_proj_model.parameters(), ip_adapter.adapter_modules.parameters())
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
# dataloader
train_dataset = MyDataset(args.data_json_file, tokenizer=tokenizer, size=args.resolution, image_root_path=args.data_root_path)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Prepare everything with our `accelerator`.
ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)
global_step = 0
for epoch in range(0, args.num_train_epochs):
begin = time.perf_counter()
for step, batch in enumerate(train_dataloader):
load_data_time = time.perf_counter() - begin
with accelerator.accumulate(ip_adapter):
# Convert images to latent space
with torch.no_grad():
latents = vae.encode(batch["images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
clip_images = []
for clip_image, drop_image_embed in zip(batch["clip_images"], batch["drop_image_embeds"]):
if drop_image_embed == 1:
clip_images.append(torch.zeros_like(clip_image))
else:
clip_images.append(clip_image)
clip_images = torch.stack(clip_images, dim=0)
with torch.no_grad():
image_embeds = image_encoder(clip_images.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]
with torch.no_grad():
encoder_hidden_states = text_encoder(batch["text_input_ids"].to(accelerator.device))[0]
noise_pred = ip_adapter(noisy_latents, timesteps, encoder_hidden_states, image_embeds)
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean().item()
# Backpropagate
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
if accelerator.is_main_process:
print("Epoch {}, step {}, data_time: {}, time: {}, step_loss: {}".format(
epoch, step, load_data_time, time.perf_counter() - begin, avg_loss))
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
begin = time.perf_counter()
if __name__ == "__main__":
main()
import os
import random
import argparse
from pathlib import Path
import json
import itertools
import time
import torch
import torch.nn.functional as F
import numpy as np
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from ip_adapter.ip_adapter import ImageProjModel
from ip_adapter.utils import is_torch2_available
if is_torch2_available():
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
else:
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
# Dataset
class MyDataset(torch.utils.data.Dataset):
def __init__(self, json_file, tokenizer, tokenizer_2, size=1024, center_crop=True, t_drop_rate=0.05, i_drop_rate=0.05, ti_drop_rate=0.05, image_root_path=""):
super().__init__()
self.tokenizer = tokenizer
self.tokenizer_2 = tokenizer_2
self.size = size
self.center_crop = center_crop
self.i_drop_rate = i_drop_rate
self.t_drop_rate = t_drop_rate
self.ti_drop_rate = ti_drop_rate
self.image_root_path = image_root_path
self.data = json.load(open(json_file)) # list of dict: [{"image_file": "1.png", "text": "A dog"}]
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
self.clip_image_processor = CLIPImageProcessor()
def __getitem__(self, idx):
item = self.data[idx]
text = item["text"]
image_file = item["image_file"]
# read image
raw_image = Image.open(os.path.join(self.image_root_path, image_file))
# original size
original_width, original_height = raw_image.size
original_size = torch.tensor([original_height, original_width])
image_tensor = self.transform(raw_image.convert("RGB"))
# random crop
delta_h = image_tensor.shape[1] - self.size
delta_w = image_tensor.shape[2] - self.size
assert not all([delta_h, delta_w])
if self.center_crop:
top = delta_h // 2
left = delta_w // 2
else:
top = np.random.randint(0, delta_h + 1)
left = np.random.randint(0, delta_w + 1)
image = transforms.functional.crop(
image_tensor, top=top, left=left, height=self.size, width=self.size
)
crop_coords_top_left = torch.tensor([top, left])
clip_image = self.clip_image_processor(images=raw_image, return_tensors="pt").pixel_values
# drop
drop_image_embed = 0
rand_num = random.random()
if rand_num < self.i_drop_rate:
drop_image_embed = 1
elif rand_num < (self.i_drop_rate + self.t_drop_rate):
text = ""
elif rand_num < (self.i_drop_rate + self.t_drop_rate + self.ti_drop_rate):
text = ""
drop_image_embed = 1
# get text and tokenize
text_input_ids = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids_2 = self.tokenizer_2(
text,
max_length=self.tokenizer_2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
return {
"image": image,
"text_input_ids": text_input_ids,
"text_input_ids_2": text_input_ids_2,
"clip_image": clip_image,
"drop_image_embed": drop_image_embed,
"original_size": original_size,
"crop_coords_top_left": crop_coords_top_left,
"target_size": torch.tensor([self.size, self.size]),
}
def __len__(self):
return len(self.data)
def collate_fn(data):
images = torch.stack([example["image"] for example in data])
text_input_ids = torch.cat([example["text_input_ids"] for example in data], dim=0)
text_input_ids_2 = torch.cat([example["text_input_ids_2"] for example in data], dim=0)
clip_images = torch.cat([example["clip_image"] for example in data], dim=0)
drop_image_embeds = [example["drop_image_embed"] for example in data]
original_size = torch.stack([example["original_size"] for example in data])
crop_coords_top_left = torch.stack([example["crop_coords_top_left"] for example in data])
target_size = torch.stack([example["target_size"] for example in data])
return {
"images": images,
"text_input_ids": text_input_ids,
"text_input_ids_2": text_input_ids_2,
"clip_images": clip_images,
"drop_image_embeds": drop_image_embeds,
"original_size": original_size,
"crop_coords_top_left": crop_coords_top_left,
"target_size": target_size,
}
class IPAdapter(torch.nn.Module):
"""IP-Adapter"""
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
super().__init__()
self.unet = unet
self.image_proj_model = image_proj_model
self.adapter_modules = adapter_modules
if ckpt_path is not None:
self.load_from_checkpoint(ckpt_path)
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
ip_tokens = self.image_proj_model(image_embeds)
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
# Predict the noise residual
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
return noise_pred
def load_from_checkpoint(self, ckpt_path: str):
# Calculate original checksums
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
state_dict = torch.load(ckpt_path, map_location="cpu")
# Load state dict for image_proj_model and adapter_modules
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
self.adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=True)
# Calculate new checksums
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj_model.parameters()]))
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.adapter_modules.parameters()]))
# Verify if the weights have changed
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
print(f"Successfully loaded weights from checkpoint {ckpt_path}")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_ip_adapter_path",
type=str,
default=None,
help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",
)
parser.add_argument(
"--data_json_file",
type=str,
default=None,
required=True,
help="Training data",
)
parser.add_argument(
"--data_root_path",
type=str,
default="",
required=True,
help="Training data root path",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to CLIP image encoder",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-ip_adapter",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate to use.",
)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--noise_offset", type=float, default=None, help="noise offset")
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--save_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder_2")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# freeze parameters of models to save more memory
unet.requires_grad_(False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
#ip-adapter
num_tokens = 4
image_proj_model = ImageProjModel(
cross_attention_dim=unet.config.cross_attention_dim,
clip_embeddings_dim=image_encoder.config.projection_dim,
clip_extra_context_tokens=num_tokens,
)
# init adapter modules
attn_procs = {}
unet_sd = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
layer_name = name.split(".processor")[0]
weights = {
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
}
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=num_tokens)
attn_procs[name].load_state_dict(weights)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules, args.pretrained_ip_adapter_path)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
#unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device) # use fp32
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder_2.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# optimizer
params_to_opt = itertools.chain(ip_adapter.image_proj_model.parameters(), ip_adapter.adapter_modules.parameters())
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
# dataloader
train_dataset = MyDataset(args.data_json_file, tokenizer=tokenizer, tokenizer_2=tokenizer_2, size=args.resolution, image_root_path=args.data_root_path)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Prepare everything with our `accelerator`.
ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)
global_step = 0
for epoch in range(0, args.num_train_epochs):
begin = time.perf_counter()
for step, batch in enumerate(train_dataloader):
load_data_time = time.perf_counter() - begin
with accelerator.accumulate(ip_adapter):
# Convert images to latent space
with torch.no_grad():
# vae of sdxl should use fp32
latents = vae.encode(batch["images"].to(accelerator.device, dtype=torch.float32)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
latents = latents.to(accelerator.device, dtype=weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1)).to(accelerator.device, dtype=weight_dtype)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
with torch.no_grad():
image_embeds = image_encoder(batch["clip_images"].to(accelerator.device, dtype=weight_dtype)).image_embeds
image_embeds_ = []
for image_embed, drop_image_embed in zip(image_embeds, batch["drop_image_embeds"]):
if drop_image_embed == 1:
image_embeds_.append(torch.zeros_like(image_embed))
else:
image_embeds_.append(image_embed)
image_embeds = torch.stack(image_embeds_)
with torch.no_grad():
encoder_output = text_encoder(batch['text_input_ids'].to(accelerator.device), output_hidden_states=True)
text_embeds = encoder_output.hidden_states[-2]
encoder_output_2 = text_encoder_2(batch['text_input_ids_2'].to(accelerator.device), output_hidden_states=True)
pooled_text_embeds = encoder_output_2[0]
text_embeds_2 = encoder_output_2.hidden_states[-2]
text_embeds = torch.concat([text_embeds, text_embeds_2], dim=-1) # concat
# add cond
add_time_ids = [
batch["original_size"].to(accelerator.device),
batch["crop_coords_top_left"].to(accelerator.device),
batch["target_size"].to(accelerator.device),
]
add_time_ids = torch.cat(add_time_ids, dim=1).to(accelerator.device, dtype=weight_dtype)
unet_added_cond_kwargs = {"text_embeds": pooled_text_embeds, "time_ids": add_time_ids}
noise_pred = ip_adapter(noisy_latents, timesteps, text_embeds, unet_added_cond_kwargs, image_embeds)
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean().item()
# Backpropagate
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
if accelerator.is_main_process:
print("Epoch {}, step {}, data_time: {}, time: {}, step_loss: {}".format(
epoch, step, load_data_time, time.perf_counter() - begin, avg_loss))
global_step += 1
if global_step % args.save_steps == 0:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
begin = time.perf_counter()
if __name__ == "__main__":
main()
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment