# README for Evaluation ## 🌟 Overview This script provides an evaluation pipeline for `ScienceQA`. ## 🗂️ Data Preparation Before starting to download the data, please create the `InternVL/internvl_chat/data` folder. ### ScienceQA Follow the instructions below to prepare the data: ```shell # Step 1: Create the data directory mkdir -p data/scienceqa/images && cd data/scienceqa/images # Step 2: Download images wget https://scienceqa.s3.us-west-1.amazonaws.com/images/test.zip && unzip test.zip cd .. # Step 3: Download original questions wget https://github.com/lupantech/ScienceQA/blob/main/data/scienceqa/problems.json # Step 4: Download converted files wget https://ofasys-wlcb.oss-cn-wulanchabu.aliyuncs.com/Qwen-VL/evaluation/scienceqa/scienceqa_test_img.jsonl cd ../.. ``` After preparation is complete, the directory structure is: ```shell data/scienceqa ├── images ├── problems.json └── scienceqa_test_img.jsonl ``` ## 🏃 Evaluation Execution > ⚠️ Note: For testing InternVL (1.5, 2.0, 2.5, and later versions), always enable `--dynamic` to perform dynamic resolution testing. To run the evaluation, execute the following command on an 8-GPU setup: ```shell torchrun --nproc_per_node=8 eval/scienceqa/evaluate_scienceqa.py --checkpoint ${CHECKPOINT} --dynamic ``` Alternatively, you can run the following simplified command: ```shell GPUS=8 sh evaluate.sh ${CHECKPOINT} scienceqa --dynamic ``` ### Arguments The following arguments can be configured for the evaluation script: | Argument | Type | Default | Description | | ---------------- | ------ | ------------ | ----------------------------------------------------------------------------------------------------------------- | | `--checkpoint` | `str` | `''` | Path to the model checkpoint. | | `--datasets` | `str` | `'sqa_test'` | Comma-separated list of datasets to evaluate. | | `--dynamic` | `flag` | `False` | Enables dynamic high resolution preprocessing. | | `--max-num` | `int` | `6` | Maximum tile number for dynamic high resolution. | | `--load-in-8bit` | `flag` | `False` | Loads the model weights in 8-bit precision. | | `--auto` | `flag` | `False` | Automatically splits a large model across 8 GPUs when needed, useful for models too large to fit on a single GPU. |