import argparse import itertools import json import os import random import time from functools import partial import torch from internvl.model import load_model_and_tokenizer from internvl.train.dataset import build_transform, dynamic_preprocess from PIL import Image from tqdm import tqdm ds_collections = { 'mpdocvqa_val': { 'root': 'data/mpdocvqa/images/', 'test': 'data/mpdocvqa/val.json', 'annotation': 'data/mpdocvqa/val.json', 'metric': 'anls', 'max_new_tokens': 100, }, 'mpdocvqa_test': { 'root': 'data/mpdocvqa/images/', 'test': 'data/mpdocvqa/test.json', 'metric': None, 'max_new_tokens': 100, } } def collate_fn(batches, tokenizer): pixel_values = torch.cat([_['pixel_values'] for _ in batches], dim=0) questions = [_['question'] for _ in batches] question_ids = [_['question_id'] for _ in batches] annotations = [_['annotation'] for _ in batches] num_patches_lists = [_['num_patches_list'] for _ in batches] return pixel_values, questions, question_ids, annotations, num_patches_lists class VQADataset(torch.utils.data.Dataset): def __init__(self, root, test, prompt, input_size=224, dynamic_image_size=False, use_thumbnail=False, max_num=6, total_max_num=64): self.root = root self.test = json.loads(open(test).read())['data'] self.prompt = prompt self.input_size = input_size self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.max_num = max_num self.total_max_num = total_max_num self.transform = build_transform(is_train=False, input_size=input_size) def __len__(self): return len(self.test) def __getitem__(self, idx): data = self.test[idx] page_ids = data['page_ids'] question_id = data['questionId'] question = data['question'] annotation = data.get('answers', None) image_list = [] for page_id in page_ids: image_path = os.path.join(self.root, page_id + '.jpg') image = Image.open(image_path).convert('RGB') image_list.append(image) max_num = max(1, min(self.max_num, self.total_max_num // len(image_list))) num_patches_list = [] if self.dynamic_image_size: images = [] for image in image_list: tiles = dynamic_preprocess(image, image_size=self.input_size, use_thumbnail=self.use_thumbnail, max_num=max_num) images += tiles num_patches_list.append(len(tiles)) else: images = image_list num_patches_list.append(1) pixel_values = [self.transform(image) for image in images] pixel_values = torch.stack(pixel_values) if len(images) > 1: prefix = ''.join([f'Image-{i + 1}: \n' for i in range(len(image_list))]) question = prefix + question if len(self.prompt) != 0: question = question + ' ' + self.prompt return { 'question_id': question_id, 'question': question, 'pixel_values': pixel_values, 'annotation': annotation, 'num_patches_list': num_patches_list } class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) def evaluate_chat_model(): base_prompt = 'Answer the question using a single word or phrase.' random.seed(args.seed) summaries = [] for ds_name in args.datasets: dataset = VQADataset( root=ds_collections[ds_name]['root'], test=ds_collections[ds_name]['test'], prompt=base_prompt, input_size=image_size, dynamic_image_size=args.dynamic, use_thumbnail=use_thumbnail, max_num=args.max_num, total_max_num=args.total_max_num, ) dataloader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len(dataset)), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) outputs = [] for _, (pixel_values, questions, question_ids, annotations, num_patches_lists) in tqdm(enumerate(dataloader)): pixel_values = pixel_values.to(torch.bfloat16).cuda() generation_config = dict( num_beams=args.num_beams, max_new_tokens=ds_collections[ds_name]['max_new_tokens'], min_new_tokens=1, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, ) with torch.inference_mode(): pred = model.chat( tokenizer=tokenizer, pixel_values=pixel_values, question=questions[0], generation_config=generation_config, num_patches_list=num_patches_lists[0], verbose=True ) torch.cuda.empty_cache() answers = [pred] for question, question_id, answer, annotation in zip(questions, question_ids, answers, annotations): if ds_name in ['mpdocvqa_val']: outputs.append({ 'question': question, 'questionId': question_id, 'answer': answer, 'annotation': annotation, }) elif ds_name in ['mpdocvqa_test']: outputs.append({ 'questionId': question_id, 'answer': answer, }) else: raise NotImplementedError torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_outputs = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs)) merged_outputs = [json.loads(_) for _ in merged_outputs] merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] if torch.distributed.get_rank() == 0: print(f'Evaluating {ds_name} ...') time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) results_file = f'{ds_name}_{time_prefix}.json' results_file = os.path.join(args.out_dir, results_file) json.dump(merged_outputs, open(results_file, 'w')) print('Results saved to {}'.format(results_file)) if ds_collections[ds_name]['metric'] == 'anls': json.dump(merged_outputs, open(results_file, 'w'), ensure_ascii=False) print('python eval/mpdocvqa/infographicsvqa_eval.py -g ' + ds_collections[ds_name]['annotation'] + ' -s ' + results_file) os.system('python eval/mpdocvqa/infographicsvqa_eval.py -g ' + ds_collections[ds_name]['annotation'] + ' -s ' + results_file) torch.distributed.barrier() out_path = '_'.join(args.checkpoint.split('/')[-2:]) writer = open(os.path.join(args.out_dir, f'{out_path}.txt'), 'a') print(f"write results to file {os.path.join(args.out_dir, f'{out_path}.txt')}") for summary in summaries: print(summary) writer.write(f'{summary}\n') writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--datasets', type=str, default='mpdocvqa_val') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--num-beams', type=int, default=1) parser.add_argument('--temperature', type=float, default=0.0) parser.add_argument('--out-dir', type=str, default='results') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--dynamic', action='store_true') parser.add_argument('--max-num', type=int, default=18) parser.add_argument('--total-max-num', type=int, default=64) parser.add_argument('--load-in-8bit', action='store_true') parser.add_argument('--load-in-4bit', action='store_true') parser.add_argument('--auto', action='store_true') args = parser.parse_args() if not os.path.exists(args.out_dir): os.makedirs(args.out_dir, exist_ok=True) args.datasets = args.datasets.split(',') print('datasets:', args.datasets) assert args.batch_size == 1, 'Only batch size 1 is supported' torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) model, tokenizer = load_model_and_tokenizer(args) image_size = model.config.force_image_size or model.config.vision_config.image_size use_thumbnail = model.config.use_thumbnail total_params = sum(p.numel() for p in model.parameters()) / 1e9 if total_params > 20 or args.dynamic: args.num_beams = 1 print(f'[test] total_params: {total_params}B, use num_beams: {args.num_beams}') else: print(f'[test] total_params: {total_params}B') print(f'[test] image_size: {image_size}') print(f'[test] template: {model.config.template}') print(f'[test] dynamic_image_size: {args.dynamic}') print(f'[test] use_thumbnail: {use_thumbnail}') print(f'[test] max_num: {args.max_num}') evaluate_chat_model()