# README for Evaluation ## 🌟 Overview This script provides an evaluation pipeline for `MP-DocVQA`. ## 🗂️ Data Preparation Before starting to download the data, please create the `InternVL/internvl_chat/data` folder. ### MP-DocVQA Follow the instructions below to prepare the data: ```shell # Step 1: Create the data directory mkdir -p data/mpdocvqa && cd data/mpdocvqa # Step 2: Download the dataset # Download from https://rrc.cvc.uab.es/?ch=17&com=downloads cd ../.. ``` After preparation is complete, the directory structure is: ```shell data/mpdocvqa ├── images ├── test.json ├── train.json └── val.json ``` ## 🏃 Evaluation Execution > ⚠️ Note: For testing InternVL (1.5, 2.0, 2.5, and later versions), always enable `--dynamic` to perform dynamic resolution testing. To run the evaluation, execute the following command on an 8-GPU setup: ```shell # Test the val set torchrun --nproc_per_node=8 eval/mpdocvqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets mpdocvqa_val --dynamic --max-num 18 # Test the test set torchrun --nproc_per_node=8 eval/mpdocvqa/evaluate_vqa.py --checkpoint ${CHECKPOINT} --datasets mpdocvqa_val --dynamic --max-num 18 ``` Alternatively, you can run the following simplified command: ```shell # Test the val set GPUS=8 sh evaluate.sh ${CHECKPOINT} vqa-mpdocvqa-val --dynamic --max-num 18 # Test the test set GPUS=8 sh evaluate.sh ${CHECKPOINT} vqa-mpdocvqa-test --dynamic --max-num 18 ``` ### Arguments The following arguments can be configured for the evaluation script: | Argument | Type | Default | Description | | ---------------- | ------ | ---------------- | ----------------------------------------------------------------------------------------------------------------- | | `--checkpoint` | `str` | `''` | Path to the model checkpoint. | | `--datasets` | `str` | `'mpdocvqa_val'` | Comma-separated list of datasets to evaluate. | | `--dynamic` | `flag` | `False` | Enables dynamic high resolution preprocessing. | | `--max-num` | `int` | `18` | Maximum tile number for dynamic high resolution. | | `--load-in-8bit` | `flag` | `False` | Loads the model weights in 8-bit precision. | | `--auto` | `flag` | `False` | Automatically splits a large model across 8 GPUs when needed, useful for models too large to fit on a single GPU. |