# -------------------------------------------------------- # InternVL # Copyright (c) 2022 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import argparse import datetime import os import random import subprocess import time import deepspeed import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from config import get_config from dataset import build_loader from ddp_hooks import fp16_compress_hook from ema_deepspeed import EMADeepspeed from logger import create_logger from lr_scheduler import build_scheduler from models import build_model from optimizer import set_weight_decay_and_lr from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import AverageMeter, accuracy from utils import MyAverageMeter, load_pretrained, reduce_tensor def parse_option(): parser = argparse.ArgumentParser( 'InternVL training and evaluation script', add_help=False) parser.add_argument('--cfg', type=str, required=True, metavar='FILE', help='path to config file') parser.add_argument('--opts', help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+') # easy config modification parser.add_argument('--batch-size', type=int, help='batch size for single GPU') parser.add_argument('--dataset', type=str, help='dataset name', default=None) parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece' ) parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--output', default='work_dirs', type=str, metavar='PATH', help='root of output folder, the full path is // (default: output)' ) parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument('--save-ckpt-num', default=1, type=int) parser.add_argument('--accumulation-steps', type=int, default=1, help='gradient accumulation steps') # distributed training parser.add_argument('--local-rank', type=int, required=True, help='local rank for DistributedDataParallel') # deepspeed config parser.add_argument('--disable-grad-scalar', action='store_true', help='disable Grad Scalar') parser.add_argument('--offload-optimizer', type=str, default='none', choices=['cpu', 'none'], help='enable optimizer offloading') parser.add_argument('--offload-param', type=str, default='none', choices=['cpu', 'none'], help='enable model offloading') # To use Zero3, Please use main_accelerate.py instead. # For this script, we are facing a similar issue as https://github.com/microsoft/DeepSpeed/issues/3068 parser.add_argument('--zero-stage', type=int, default=1, choices=[1, 2], help='deep speed zero stage') args, unparsed = parser.parse_known_args() config = get_config(args) return args, config def seed_everything(seed, rank): seed = seed + rank torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) cudnn.benchmark = True def save_config(config): path = os.path.join(config.OUTPUT, 'config.json') with open(path, 'w') as f: f.write(config.dump()) logger.info(f'Full config saved to {path}') def build_criterion(config): if config.AUG.MIXUP > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif config.MODEL.LABEL_SMOOTHING > 0.: criterion = LabelSmoothingCrossEntropy( smoothing=config.MODEL.LABEL_SMOOTHING) else: criterion = torch.nn.CrossEntropyLoss() return criterion def scale_learning_rate(config, num_processes): # linear scale the learning rate according to total batch size, may not be optimal linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * num_processes / 512.0 linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * num_processes / 512.0 linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * num_processes / 512.0 # gradient accumulation also need to scale the learning rate if config.TRAIN.ACCUMULATION_STEPS > 1: linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS config.defrost() config.TRAIN.BASE_LR = linear_scaled_lr config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr config.TRAIN.MIN_LR = linear_scaled_min_lr config.freeze() logger.info('BASE_LR={}'.format(config.TRAIN.BASE_LR)) logger.info('WARMUP_LR={}'.format(config.TRAIN.WARMUP_LR)) logger.info('MIN_LR={}'.format(config.TRAIN.MIN_LR)) def log_model_statistic(model_wo_ddp): n_parameters = sum(p.numel() for p in model_wo_ddp.parameters() if p.requires_grad) logger.info(f'number of params: {n_parameters / 1e6} M') if hasattr(model_wo_ddp, 'flops'): flops = model_wo_ddp.flops() logger.info(f'number of GFLOPs: {flops / 1e9}') def get_parameter_groups(model, config): skip = {} skip_keywords = {} if hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay_keywords'): skip_keywords = model.no_weight_decay_keywords() parameters = set_weight_decay_and_lr( model, config.TRAIN.WEIGHT_DECAY, config.TRAIN.BASE_LR, skip, skip_keywords, lr_layer_decay=config.TRAIN.LR_LAYER_DECAY, lr_layer_decay_ratio=config.TRAIN.LR_LAYER_DECAY_RATIO, freeze_backbone=config.TRAIN.OPTIMIZER.FREEZE_BACKBONE, dcn_lr_mul=config.TRAIN.OPTIMIZER.DCN_LR_MUL, ) return parameters def get_optimizer_state_str(optimizer): states = [] for param_group in optimizer.param_groups: states.append(f'name={param_group["name"]} lr={param_group["lr"]} weight_decay={param_group["weight_decay"]}') return '\n'.join(states) def build_ds_config(config, args): opt_lower = config.TRAIN.OPTIMIZER.NAME.lower() if opt_lower == 'adamw': optimizer = { 'type': 'AdamW', 'params': { 'lr': config.TRAIN.BASE_LR, 'eps': config.TRAIN.OPTIMIZER.EPS, 'betas': config.TRAIN.OPTIMIZER.BETAS, 'weight_decay': config.TRAIN.WEIGHT_DECAY } } else: return NotImplemented ds_config = { 'train_micro_batch_size_per_gpu': config.DATA.BATCH_SIZE, 'optimizer': optimizer, 'bf16': { 'enabled': True, }, 'zero_optimization': { 'stage': 1, 'allgather_partitions': True, 'allgather_bucket_size': 1e9, 'overlap_comm': True, 'reduce_scatter': True, 'reduce_bucket_size': 1e9, 'contiguous_gradients': True }, 'steps_per_print': 1e10, 'gradient_accumulation_steps': config.TRAIN.ACCUMULATION_STEPS, 'gradient_clipping': config.TRAIN.CLIP_GRAD, } return ds_config @torch.no_grad() def throughput(data_loader, model, logger): model.eval() for idx, (images, _) in enumerate(data_loader): images = images.cuda(non_blocking=True) batch_size = images.shape[0] for i in range(50): model(images) torch.cuda.synchronize() logger.info(f'throughput averaged with 30 times') tic1 = time.time() for i in range(30): model(images) torch.cuda.synchronize() tic2 = time.time() logger.info( f'batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}' ) return def train_epoch(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, model_ema=None): model.train() num_steps = len(data_loader) batch_time = AverageMeter() model_time = AverageMeter() loss_meter = AverageMeter() norm_meter = MyAverageMeter(300) start = time.time() end = time.time() for idx, (samples, targets) in enumerate(data_loader): iter_begin_time = time.time() samples = samples.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) outputs = model(samples) loss = criterion(outputs, targets) model.backward(loss) model.step() if model_ema is not None: model_ema(model) if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0: lr_scheduler.step_update(epoch * num_steps + idx) torch.cuda.synchronize() loss_meter.update(loss.item(), targets.size(0)) norm_meter.update(optimizer._global_grad_norm) batch_time.update(time.time() - end) model_time.update(time.time() - iter_begin_time) end = time.time() if idx % config.PRINT_FREQ == 0: lr = optimizer.param_groups[0]['lr'] memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) etas = batch_time.avg * (num_steps - idx) logger.info( f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t' f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t' f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t' f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f}/{norm_meter.var:.4f})\t' f'mem {memory_used:.0f}MB') epoch_time = time.time() - start logger.info(f'EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}') @torch.no_grad() def eval_epoch(config, data_loader, model, epoch=None): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() end = time.time() for idx, (images, target) in enumerate(data_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) output = model(images) # convert 22k to 1k to evaluate if output.size(-1) == 21841: convert_file = './meta_data/map22kto1k.txt' with open(convert_file, 'r') as f: convert_list = [int(line) for line in f.readlines()] output = output[:, convert_list] # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) acc1 = reduce_tensor(acc1) acc5 = reduce_tensor(acc5) loss = reduce_tensor(loss) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) logger.info(f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') if epoch is not None: logger.info(f'[Epoch:{epoch}] * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') else: logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg def train(config, ds_config): # -------------- build ---------------- # _, dataset_val, _, data_loader_train, data_loader_val, _, mixup_fn = build_loader(config) model = build_model(config) model.cuda() if config.MODEL.PRETRAINED: load_pretrained(config, model, logger) logger.info(ds_config) model, optimizer, _, _ = deepspeed.initialize( config=ds_config, model=model, model_parameters=get_parameter_groups(model, config), dist_init_required=False, ) try: model.register_comm_hook(state=None, hook=fp16_compress_hook) logger.info('using fp16_compress_hook!') except: logger.info('cannot register fp16_compress_hook!') model_without_ddp = model.module lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train)) criterion = build_criterion(config) model_ema = None if config.TRAIN.EMA.ENABLE: model_ema = EMADeepspeed(model, config.TRAIN.EMA.DECAY) # -------------- resume ---------------- # max_accuracy = 0.0 max_accuracy_ema = 0.0 client_state = {} if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME: if os.path.exists(os.path.join(config.OUTPUT, 'latest')): config.defrost() config.MODEL.RESUME = config.OUTPUT config.freeze() tag = None elif config.MODEL.RESUME: config.MODEL.RESUME = os.path.dirname(config.MODEL.RESUME) tag = os.path.basename(config.MODEL.RESUME) if config.MODEL.RESUME: logger.info('loading checkpoint from {}'.format(config.MODEL.RESUME)) _, client_state = model.load_checkpoint(load_dir=config.MODEL.RESUME, tag=tag) logger.info(f'client_state={client_state.keys()}') lr_scheduler.load_state_dict(client_state['custom_lr_scheduler']) max_accuracy = client_state['max_accuracy'] if model_ema is not None: max_accuracy_ema = client_state.get('max_accuracy_ema', 0.0) model_ema.load_state_dict((client_state['model_ema'])) # -------------- training ---------------- # logger.info(f'Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}') logger.info(str(model)) logger.info(get_optimizer_state_str(optimizer)) logger.info('Start training') logger.info('max_accuracy: {}'.format(max_accuracy)) log_model_statistic(model_without_ddp) start_time = time.time() start_epoch = client_state['epoch'] + 1 if 'epoch' in client_state else config.TRAIN.START_EPOCH for epoch in range(start_epoch, config.TRAIN.EPOCHS): data_loader_train.sampler.set_epoch(epoch) train_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler, model_ema=model_ema) if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.EPOCHS - 1: model.save_checkpoint( save_dir=config.OUTPUT, tag=f'epoch{epoch}', client_state={ 'custom_lr_scheduler': lr_scheduler.state_dict(), 'max_accuracy': max_accuracy, 'epoch': epoch, 'config': config, 'max_accuracy_ema': max_accuracy_ema if model_ema is not None else 0.0, 'model_ema': model_ema.state_dict() if model_ema is not None else None, } ) if epoch % config.EVAL_FREQ == 0: acc1, _, _ = eval_epoch(config, data_loader_val, model, epoch) logger.info(f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%') if acc1 > max_accuracy: model.save_checkpoint( save_dir=config.OUTPUT, tag='best', client_state={ 'custom_lr_scheduler': lr_scheduler.state_dict(), 'max_accuracy': max_accuracy, 'epoch': epoch, 'config': config, 'max_accuracy_ema': max_accuracy_ema if model_ema is not None else 0.0, 'model_ema': model_ema.state_dict() if model_ema is not None else None, } ) max_accuracy = max(max_accuracy, acc1) logger.info(f'Max accuracy: {max_accuracy:.2f}%') if model_ema is not None: with model_ema.activate(model): acc1_ema, _, _ = eval_epoch(config, data_loader_val, model, epoch) logger.info(f'[EMA] Accuracy of the network on the {len(dataset_val)} test images: {acc1_ema:.1f}%') max_accuracy_ema = max(max_accuracy_ema, acc1_ema) logger.info(f'[EMA] Max accuracy: {max_accuracy_ema:.2f}%') total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info('Training time {}'.format(total_time_str)) def eval(config): _, _, _, _, data_loader_val, _, _ = build_loader(config) model = build_model(config) model.cuda() model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False) model_wo_ddp = model.module if config.MODEL.RESUME: try: checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') msg = model_wo_ddp.load_state_dict(checkpoint['model'], strict=False) logger.info(msg) except: try: from deepspeed.utils.zero_to_fp32 import \ get_fp32_state_dict_from_zero_checkpoint ckpt_dir = os.path.dirname(config.MODEL.RESUME) tag = os.path.basename(config.MODEL.RESUME) state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir=ckpt_dir, tag=tag) model_wo_ddp.load_state_dict(state_dict) except: checkpoint = torch.load(os.path.join(config.MODEL.RESUME, 'mp_rank_00_model_states.pt'), map_location='cpu') model_wo_ddp.load_state_dict(checkpoint['module']) elif config.MODEL.PRETRAINED: load_pretrained(config, model_wo_ddp, logger) if config.THROUGHPUT_MODE: throughput(data_loader_val, model, logger) eval_epoch(config, data_loader_val, model) if __name__ == '__main__': args, config = parse_option() # init distributed env if 'SLURM_PROCID' in os.environ: print('\nDist init: SLURM') rank = int(os.environ['SLURM_PROCID']) gpu = rank % torch.cuda.device_count() config.defrost() config.LOCAL_RANK = gpu config.freeze() world_size = int(os.environ['SLURM_NTASKS']) if 'MASTER_PORT' not in os.environ: os.environ['MASTER_PORT'] = '29501' node_list = os.environ['SLURM_NODELIST'] addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') if 'MASTER_ADDR' not in os.environ: os.environ['MASTER_ADDR'] = addr os.environ['RANK'] = str(rank) os.environ['LOCAL_RANK'] = str(gpu) os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count()) os.environ['WORLD_SIZE'] = str(world_size) if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: rank = int(os.environ['RANK']) world_size = int(os.environ['WORLD_SIZE']) print(f'RANK and WORLD_SIZE in environ: {rank}/{world_size}') else: rank = -1 world_size = -1 torch.cuda.set_device(config.LOCAL_RANK) torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank) torch.distributed.barrier() os.makedirs(config.OUTPUT, exist_ok=True) logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f'{config.MODEL.NAME}') logger.info(config.dump()) if dist.get_rank() == 0: save_config(config) scale_learning_rate(config, dist.get_world_size()) seed_everything(config.SEED, dist.get_rank()) if config.EVAL_MODE: eval(config) else: train(config, build_ds_config(config, args))