Commit 1d5a34cf authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
Pipeline #1446 canceled with stages
DATA:
IMG_ON_MEMORY: False
BATCH_SIZE: 128
DATASET: 'imagenetv2'
TRANSFORM: 'build_transform_for_linear_probe'
DATA_PATH: './data/imagenetv2'
MODEL:
TYPE: intern_vit_6b
DROP_PATH_RATE: 0.0
INTERN_VIT_6B:
FREEZE_VIT: True
PATCH_SIZE: 14
PRETRAIN_SIZE: 224
QKV_BIAS: False
EMBED_DIM: 3200
NUM_HEADS: 25
MLP_RATIO: 4
INIT_VALUES: 0.1
QK_NORMALIZATION: True
DEPTH: 48
USE_FLASH_ATTN: True
PRETRAINED: "./pretrained/intern_vit_6b_224px.pth"
CLS_TARGET: 'cls_patch_concat'
TRAIN:
EMA:
ENABLE: False
DECAY: 0.998
EPOCHS: 10
WARMUP_EPOCHS: 1
WEIGHT_DECAY: 0.0
BASE_LR: 0.1 # 512
WARMUP_LR: .0
MIN_LR: .0
LR_LAYER_DECAY: false
OPTIMIZER:
NAME: 'sgd'
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from .build import build_loader, build_loader2
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
import numpy as np
import torch
import torch.distributed as dist
from timm.data import Mixup, create_transform
from torchvision import transforms
from torchvision.datasets import ImageFolder
from .cached_image_folder import ImageCephDataset
from .samplers import NodeDistributedSampler, SubsetRandomSampler
try:
from torchvision.transforms import InterpolationMode
def _pil_interp(method):
if method == 'bicubic':
return InterpolationMode.BICUBIC
elif method == 'lanczos':
return InterpolationMode.LANCZOS
elif method == 'hamming':
return InterpolationMode.HAMMING
else:
return InterpolationMode.BILINEAR
except:
from timm.data.transforms import _pil_interp
class TTA(torch.nn.Module):
def __init__(self, size, scales=[1.0, 1.05, 1.1]):
super().__init__()
self.size = size
self.scales = scales
def forward(self, img):
out = []
cc = transforms.CenterCrop(self.size)
for scale in self.scales:
size_ = int(scale * self.size)
rs = transforms.Resize(size_, interpolation=_pil_interp('bicubic'))
img_ = rs(img)
img_ = cc(img_)
out.append(img_)
return out
def __repr__(self) -> str:
return f'{self.__class__.__name__}(size={self.size}, scale={self.scales})'
def build_loader(config):
config.defrost()
dataset_train, config.MODEL.NUM_CLASSES = build_dataset('train', config=config)
config.freeze()
print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
'successfully build train dataset')
dataset_val, _ = build_dataset('val', config=config)
print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
'successfully build val dataset')
dataset_test, _ = build_dataset('test', config=config)
print(f'local rank {config.LOCAL_RANK} / global rank {dist.get_rank()}'
'successfully build test dataset')
num_tasks = dist.get_world_size()
global_rank = dist.get_rank()
if dataset_train is not None:
if config.DATA.IMG_ON_MEMORY:
sampler_train = NodeDistributedSampler(dataset_train)
else:
if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part':
indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size())
sampler_train = SubsetRandomSampler(indices)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train,
num_replicas=num_tasks,
rank=global_rank,
shuffle=True)
if dataset_val is not None:
if config.TEST.SEQUENTIAL:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_val = torch.utils.data.distributed.DistributedSampler(dataset_val, shuffle=False)
if dataset_test is not None:
if config.TEST.SEQUENTIAL:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
else:
sampler_test = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=config.DATA.BATCH_SIZE,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=True,
persistent_workers=True) if dataset_train is not None else None
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
sampler=sampler_val,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=False,
persistent_workers=True) if dataset_val is not None else None
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
sampler=sampler_test,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=False,
persistent_workers=True) if dataset_test is not None else None
# setup mixup / cutmix
mixup_fn = None
mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
if mixup_active:
mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
cutmix_alpha=config.AUG.CUTMIX,
cutmix_minmax=config.AUG.CUTMIX_MINMAX,
prob=config.AUG.MIXUP_PROB,
switch_prob=config.AUG.MIXUP_SWITCH_PROB,
mode=config.AUG.MIXUP_MODE,
label_smoothing=config.MODEL.LABEL_SMOOTHING,
num_classes=config.MODEL.NUM_CLASSES)
return dataset_train, dataset_val, dataset_test, data_loader_train, \
data_loader_val, data_loader_test, mixup_fn
def build_loader2(config):
config.defrost()
dataset_train, config.MODEL.NUM_CLASSES = build_dataset('train', config=config)
config.freeze()
dataset_val, _ = build_dataset('val', config=config)
dataset_test, _ = build_dataset('test', config=config)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
shuffle=True,
batch_size=config.DATA.BATCH_SIZE,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=True,
persistent_workers=True) if dataset_train is not None else None
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=False,
persistent_workers=True) if dataset_val is not None else None
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=False,
persistent_workers=True) if dataset_test is not None else None
# setup mixup / cutmix
mixup_fn = None
mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
if mixup_active:
mixup_fn = Mixup(mixup_alpha=config.AUG.MIXUP,
cutmix_alpha=config.AUG.CUTMIX,
cutmix_minmax=config.AUG.CUTMIX_MINMAX,
prob=config.AUG.MIXUP_PROB,
switch_prob=config.AUG.MIXUP_SWITCH_PROB,
mode=config.AUG.MIXUP_MODE,
label_smoothing=config.MODEL.LABEL_SMOOTHING,
num_classes=config.MODEL.NUM_CLASSES)
return dataset_train, dataset_val, dataset_test, data_loader_train, \
data_loader_val, data_loader_test, mixup_fn
def build_dataset(split, config):
if config.DATA.TRANSFORM == 'build_transform':
transform = build_transform(split == 'train', config)
elif config.DATA.TRANSFORM == 'build_transform_for_linear_probe':
transform = build_transform_for_linear_probe(split == 'train', config)
else:
raise NotImplementedError
print(split, transform)
dataset = None
nb_classes = None
prefix = split
if config.DATA.DATASET == 'imagenet' or config.DATA.DATASET == 'imagenet-real':
if prefix == 'train' and not config.EVAL_MODE:
root = os.path.join(config.DATA.DATA_PATH, 'train')
dataset = ImageCephDataset(root, 'train',
transform=transform,
on_memory=config.DATA.IMG_ON_MEMORY)
elif prefix == 'val':
root = os.path.join(config.DATA.DATA_PATH, 'val')
dataset = ImageCephDataset(root, 'val', transform=transform)
nb_classes = 1000
elif config.DATA.DATASET == 'imagenet22K':
if prefix == 'train':
if not config.EVAL_MODE:
root = config.DATA.DATA_PATH
dataset = ImageCephDataset(root, 'train',
transform=transform,
on_memory=config.DATA.IMG_ON_MEMORY)
nb_classes = 21841
elif prefix == 'val':
root = os.path.join(config.DATA.DATA_PATH, 'val')
dataset = ImageCephDataset(root, 'val', transform=transform)
nb_classes = 1000
elif config.DATA.DATASET == 'imagenetv2':
from .imagenetv2 import ImageNetV2Dataset
if prefix == 'train' and not config.EVAL_MODE:
print(f'Only test split available for {config.DATA.DATASET}')
else:
dataset = ImageNetV2Dataset(variant='matched-frequency',
transform=transform,
location=config.DATA.DATA_PATH)
nb_classes = 1000
elif config.DATA.DATASET == 'imagenet_sketch':
if prefix == 'train' and not config.EVAL_MODE:
print(f'Only test split available for {config.DATA.DATASET}')
else:
dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
nb_classes = 1000
elif config.DATA.DATASET == 'imagenet_a':
if prefix == 'train' and not config.EVAL_MODE:
print(f'Only test split available for {config.DATA.DATASET}')
else:
dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
nb_classes = 1000 # actual number of classes is 200
elif config.DATA.DATASET == 'imagenet_r':
if prefix == 'train' and not config.EVAL_MODE:
print(f'Only test split available for {config.DATA.DATASET}')
else:
dataset = ImageFolder(root=config.DATA.DATA_PATH, transform=transform)
nb_classes = 1000 # actual number of classes is 200
else:
raise NotImplementedError(
f'build_dataset does support {config.DATA.DATASET}')
return dataset, nb_classes
def build_transform_for_linear_probe(is_train, config):
# linear probe: weak augmentation
if is_train:
transform = transforms.Compose([
transforms.RandomResizedCrop(
config.DATA.IMG_SIZE, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=config.AUG.MEAN, std=config.AUG.STD)
])
else:
transform = transforms.Compose([
transforms.Resize(
config.DATA.IMG_SIZE, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(config.DATA.IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=config.AUG.MEAN, std=config.AUG.STD)
])
return transform
def build_transform(is_train, config):
resize_im = config.DATA.IMG_SIZE > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=config.DATA.IMG_SIZE,
is_training=True,
color_jitter=config.AUG.COLOR_JITTER
if config.AUG.COLOR_JITTER > 0 else None,
auto_augment=config.AUG.AUTO_AUGMENT
if config.AUG.AUTO_AUGMENT != 'none' else None,
re_prob=config.AUG.REPROB,
re_mode=config.AUG.REMODE,
re_count=config.AUG.RECOUNT,
interpolation=config.DATA.INTERPOLATION,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4)
return transform
t = []
if resize_im:
if config.TEST.CROP:
size = int(1.0 * config.DATA.IMG_SIZE)
t.append(
transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)),
# to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
elif config.AUG.RANDOM_RESIZED_CROP:
t.append(
transforms.RandomResizedCrop(
(config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
interpolation=_pil_interp(config.DATA.INTERPOLATION)))
else:
t.append(
transforms.Resize(
(config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
interpolation=_pil_interp(config.DATA.INTERPOLATION)))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(config.AUG.MEAN, config.AUG.STD))
return transforms.Compose(t)
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import io
import json
import logging
import math
import os
import os.path as osp
import re
import time
from abc import abstractmethod
import mmcv
import torch
import torch.distributed as dist
import torch.utils.data as data
from mmcv.fileio import FileClient
from PIL import Image
from tqdm import tqdm, trange
from .zipreader import ZipReader, is_zip_path
_logger = logging.getLogger(__name__)
_ERROR_RETRY = 50
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions)
def find_classes(dir):
classes = [
d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))
]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx, extensions):
images = []
dir = os.path.expanduser(dir)
for target in sorted(os.listdir(dir)):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
if has_file_allowed_extension(fname, extensions):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
def make_dataset_with_ann(ann_file, img_prefix, extensions):
images = []
with open(ann_file, 'r') as f:
contents = f.readlines()
for line_str in contents:
path_contents = [c for c in line_str.split('\t')]
im_file_name = path_contents[0]
class_index = int(path_contents[1])
assert str.lower(os.path.splitext(im_file_name)[-1]) in extensions
item = (os.path.join(img_prefix, im_file_name), class_index)
images.append(item)
return images
class DatasetFolder(data.Dataset):
"""A generic data loader where the samples are arranged in this way: ::
root/class_x/xxx.ext
root/class_x/xxy.ext
root/class_x/xxz.ext
root/class_y/123.ext
root/class_y/nsdf3.ext
root/class_y/asd932_.ext
Args:
root (string): Root directory path.
loader (callable): A function to load a sample given its path.
extensions (list[string]): A list of allowed extensions.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
Attributes:
samples (list): List of (sample path, class_index) tuples
"""
def __init__(self,
root,
loader,
extensions,
ann_file='',
img_prefix='',
transform=None,
target_transform=None,
cache_mode='no'):
# image folder mode
if ann_file == '':
_, class_to_idx = find_classes(root)
samples = make_dataset(root, class_to_idx, extensions)
# zip mode
else:
samples = make_dataset_with_ann(os.path.join(root, ann_file),
os.path.join(root, img_prefix),
extensions)
if len(samples) == 0:
raise (RuntimeError('Found 0 files in subfolders of: ' + root +
'\n' + 'Supported extensions are: ' +
','.join(extensions)))
self.root = root
self.loader = loader
self.extensions = extensions
self.samples = samples
self.labels = [y_1k for _, y_1k in samples]
self.classes = list(set(self.labels))
self.transform = transform
self.target_transform = target_transform
self.cache_mode = cache_mode
if self.cache_mode != 'no':
self.init_cache()
def init_cache(self):
assert self.cache_mode in ['part', 'full']
n_sample = len(self.samples)
global_rank = dist.get_rank()
world_size = dist.get_world_size()
samples_bytes = [None for _ in range(n_sample)]
start_time = time.time()
for index in range(n_sample):
if index % (n_sample // 10) == 0:
t = time.time() - start_time
print(
f'global_rank {dist.get_rank()} cached {index}/{n_sample} takes {t:.2f}s per block'
)
start_time = time.time()
path, target = self.samples[index]
if self.cache_mode == 'full':
samples_bytes[index] = (ZipReader.read(path), target)
elif self.cache_mode == 'part' and index % world_size == global_rank:
samples_bytes[index] = (ZipReader.read(path), target)
else:
samples_bytes[index] = (path, target)
self.samples = samples_bytes
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(
tmp,
self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(
tmp,
self.target_transform.__repr__().replace('\n',
'\n' + ' ' * len(tmp)))
return fmt_str
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
if isinstance(path, bytes):
img = Image.open(io.BytesIO(path))
elif is_zip_path(path):
data = ZipReader.read(path)
img = Image.open(io.BytesIO(data))
else:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_img_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class CachedImageFolder(DatasetFolder):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self,
root,
ann_file='',
img_prefix='',
transform=None,
target_transform=None,
loader=default_img_loader,
cache_mode='no'):
super(CachedImageFolder,
self).__init__(root,
loader,
IMG_EXTENSIONS,
ann_file=ann_file,
img_prefix=img_prefix,
transform=transform,
target_transform=target_transform,
cache_mode=cache_mode)
self.imgs = self.samples
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
image = self.loader(path)
if self.transform is not None:
img = self.transform(image)
else:
img = image
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
class ImageCephDataset(data.Dataset):
def __init__(self,
root,
split,
parser=None,
transform=None,
target_transform=None,
on_memory=False):
if '22k' in root:
# Imagenet 22k
annotation_root = 'meta_data/'
else:
# Imagenet
annotation_root = 'meta_data/'
if parser is None or isinstance(parser, str):
parser = ParserCephImage(root=root,
split=split,
annotation_root=annotation_root,
on_memory=on_memory)
self.parser = parser
self.transform = transform
self.target_transform = target_transform
self._consecutive_errors = 0
def __getitem__(self, index):
img, target = self.parser[index]
self._consecutive_errors = 0
if self.transform is not None:
img = self.transform(img)
if target is None:
target = -1
elif self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.parser)
def filename(self, index, basename=False, absolute=False):
return self.parser.filename(index, basename, absolute)
def filenames(self, basename=False, absolute=False):
return self.parser.filenames(basename, absolute)
class Parser:
def __init__(self):
pass
@abstractmethod
def _filename(self, index, basename=False, absolute=False):
pass
def filename(self, index, basename=False, absolute=False):
return self._filename(index, basename=basename, absolute=absolute)
def filenames(self, basename=False, absolute=False):
return [
self._filename(index, basename=basename, absolute=absolute)
for index in range(len(self))
]
class ParserCephImage(Parser):
def __init__(self,
root,
split,
annotation_root,
on_memory=False,
**kwargs):
super().__init__()
self.file_client = None
self.kwargs = kwargs
self.root = root # dataset:s3://imagenet22k
if '22k' in root:
self.io_backend = 'petrel'
with open(osp.join(annotation_root, '22k_class_to_idx.json'),
'r') as f:
self.class_to_idx = json.loads(f.read())
with open(osp.join(annotation_root, '22k_label.txt'), 'r') as f:
self.samples = f.read().splitlines()
else:
self.io_backend = 'disk'
self.class_to_idx = None
with open(osp.join(annotation_root, f'{split}.txt'), 'r') as f:
self.samples = f.read().splitlines()
local_rank = None
local_size = None
self._consecutive_errors = 0
self.on_memory = on_memory
if on_memory:
self.holder = {}
if local_rank is None:
local_rank = int(os.environ.get('LOCAL_RANK', 0))
if local_size is None:
local_size = int(os.environ.get('LOCAL_SIZE', 1))
self.local_rank = local_rank
self.local_size = local_size
self.rank = int(os.environ['RANK'])
self.world_size = int(os.environ['WORLD_SIZE'])
self.num_replicas = int(os.environ['WORLD_SIZE'])
self.num_parts = local_size
self.num_samples = int(
math.ceil(len(self.samples) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.total_size_parts = self.num_samples * self.num_replicas // self.num_parts
self.load_onto_memory_v2()
def load_onto_memory(self):
print('Loading images onto memory...', self.local_rank,
self.local_size)
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
for index in trange(len(self.samples)):
if index % self.local_size != self.local_rank:
continue
path, _ = self.samples[index].split(' ')
path = osp.join(self.root, path)
img_bytes = self.file_client.get(path)
self.holder[path] = img_bytes
print('Loading complete!')
def load_onto_memory_v2(self):
# print("Loading images onto memory...", self.local_rank, self.local_size)
t = torch.Generator()
t.manual_seed(0)
indices = torch.randperm(len(self.samples), generator=t).tolist()
# indices = range(len(self.samples))
indices = [i for i in indices if i % self.num_parts == self.local_rank]
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size_parts - len(indices))]
assert len(indices) == self.total_size_parts
# subsample
indices = indices[self.rank // self.num_parts:self.
total_size_parts:self.num_replicas // self.num_parts]
assert len(indices) == self.num_samples
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
for index in tqdm(indices):
if index % self.local_size != self.local_rank:
continue
path, _ = self.samples[index].split(' ')
path = osp.join(self.root, path)
img_bytes = self.file_client.get(path)
self.holder[path] = img_bytes
print('Loading complete!')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
filepath, target = self.samples[index].split(' ')
filepath = osp.join(self.root, filepath)
try:
if self.on_memory:
img_bytes = self.holder[filepath]
else:
# pass
img_bytes = self.file_client.get(filepath)
img = mmcv.imfrombytes(img_bytes)[:, :, ::-1]
except Exception as e:
_logger.warning(
f'Skipped sample (index {index}, file {filepath}). {str(e)}')
self._consecutive_errors += 1
if self._consecutive_errors < _ERROR_RETRY:
return self.__getitem__((index + 1) % len(self))
else:
raise e
self._consecutive_errors = 0
img = Image.fromarray(img)
try:
if self.class_to_idx is not None:
target = self.class_to_idx[target]
else:
target = int(target)
except:
print(filepath, target)
exit()
return img, target
def __len__(self):
return len(self.samples)
def _filename(self, index, basename=False, absolute=False):
filename, _ = self.samples[index].split(' ')
filename = osp.join(self.root, filename)
return filename
def get_temporal_info(date, miss_hour=False):
try:
if date:
if miss_hour:
pattern = re.compile(r'(\d*)-(\d*)-(\d*)', re.I)
else:
pattern = re.compile(r'(\d*)-(\d*)-(\d*) (\d*):(\d*):(\d*)',
re.I)
m = pattern.match(date.strip())
if m:
year = int(m.group(1))
month = int(m.group(2))
day = int(m.group(3))
x_month = math.sin(2 * math.pi * month / 12)
y_month = math.cos(2 * math.pi * month / 12)
if miss_hour:
x_hour = 0
y_hour = 0
else:
hour = int(m.group(4))
x_hour = math.sin(2 * math.pi * hour / 24)
y_hour = math.cos(2 * math.pi * hour / 24)
return [x_month, y_month, x_hour, y_hour]
else:
return [0, 0, 0, 0]
else:
return [0, 0, 0, 0]
except:
return [0, 0, 0, 0]
def get_spatial_info(latitude, longitude):
if latitude and longitude:
latitude = math.radians(latitude)
longitude = math.radians(longitude)
x = math.cos(latitude) * math.cos(longitude)
y = math.cos(latitude) * math.sin(longitude)
z = math.sin(latitude)
return [x, y, z]
else:
return [0, 0, 0]
"""Code from https://github.com/baaivision/EVA/blob/master/EVA-02/asuka/imagenet_a_r_indices.py
Thanks to the authors of EVA."""
all_wnids = [
'n01440764', 'n01443537', 'n01484850', 'n01491361', 'n01494475',
'n01496331', 'n01498041', 'n01514668', 'n01514859', 'n01518878',
'n01530575', 'n01531178', 'n01532829', 'n01534433', 'n01537544',
'n01558993', 'n01560419', 'n01580077', 'n01582220', 'n01592084',
'n01601694', 'n01608432', 'n01614925', 'n01616318', 'n01622779',
'n01629819', 'n01630670', 'n01631663', 'n01632458', 'n01632777',
'n01641577', 'n01644373', 'n01644900', 'n01664065', 'n01665541',
'n01667114', 'n01667778', 'n01669191', 'n01675722', 'n01677366',
'n01682714', 'n01685808', 'n01687978', 'n01688243', 'n01689811',
'n01692333', 'n01693334', 'n01694178', 'n01695060', 'n01697457',
'n01698640', 'n01704323', 'n01728572', 'n01728920', 'n01729322',
'n01729977', 'n01734418', 'n01735189', 'n01737021', 'n01739381',
'n01740131', 'n01742172', 'n01744401', 'n01748264', 'n01749939',
'n01751748', 'n01753488', 'n01755581', 'n01756291', 'n01768244',
'n01770081', 'n01770393', 'n01773157', 'n01773549', 'n01773797',
'n01774384', 'n01774750', 'n01775062', 'n01776313', 'n01784675',
'n01795545', 'n01796340', 'n01797886', 'n01798484', 'n01806143',
'n01806567', 'n01807496', 'n01817953', 'n01818515', 'n01819313',
'n01820546', 'n01824575', 'n01828970', 'n01829413', 'n01833805',
'n01843065', 'n01843383', 'n01847000', 'n01855032', 'n01855672',
'n01860187', 'n01871265', 'n01872401', 'n01873310', 'n01877812',
'n01882714', 'n01883070', 'n01910747', 'n01914609', 'n01917289',
'n01924916', 'n01930112', 'n01943899', 'n01944390', 'n01945685',
'n01950731', 'n01955084', 'n01968897', 'n01978287', 'n01978455',
'n01980166', 'n01981276', 'n01983481', 'n01984695', 'n01985128',
'n01986214', 'n01990800', 'n02002556', 'n02002724', 'n02006656',
'n02007558', 'n02009229', 'n02009912', 'n02011460', 'n02012849',
'n02013706', 'n02017213', 'n02018207', 'n02018795', 'n02025239',
'n02027492', 'n02028035', 'n02033041', 'n02037110', 'n02051845',
'n02056570', 'n02058221', 'n02066245', 'n02071294', 'n02074367',
'n02077923', 'n02085620', 'n02085782', 'n02085936', 'n02086079',
'n02086240', 'n02086646', 'n02086910', 'n02087046', 'n02087394',
'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02088632',
'n02089078', 'n02089867', 'n02089973', 'n02090379', 'n02090622',
'n02090721', 'n02091032', 'n02091134', 'n02091244', 'n02091467',
'n02091635', 'n02091831', 'n02092002', 'n02092339', 'n02093256',
'n02093428', 'n02093647', 'n02093754', 'n02093859', 'n02093991',
'n02094114', 'n02094258', 'n02094433', 'n02095314', 'n02095570',
'n02095889', 'n02096051', 'n02096177', 'n02096294', 'n02096437',
'n02096585', 'n02097047', 'n02097130', 'n02097209', 'n02097298',
'n02097474', 'n02097658', 'n02098105', 'n02098286', 'n02098413',
'n02099267', 'n02099429', 'n02099601', 'n02099712', 'n02099849',
'n02100236', 'n02100583', 'n02100735', 'n02100877', 'n02101006',
'n02101388', 'n02101556', 'n02102040', 'n02102177', 'n02102318',
'n02102480', 'n02102973', 'n02104029', 'n02104365', 'n02105056',
'n02105162', 'n02105251', 'n02105412', 'n02105505', 'n02105641',
'n02105855', 'n02106030', 'n02106166', 'n02106382', 'n02106550',
'n02106662', 'n02107142', 'n02107312', 'n02107574', 'n02107683',
'n02107908', 'n02108000', 'n02108089', 'n02108422', 'n02108551',
'n02108915', 'n02109047', 'n02109525', 'n02109961', 'n02110063',
'n02110185', 'n02110341', 'n02110627', 'n02110806', 'n02110958',
'n02111129', 'n02111277', 'n02111500', 'n02111889', 'n02112018',
'n02112137', 'n02112350', 'n02112706', 'n02113023', 'n02113186',
'n02113624', 'n02113712', 'n02113799', 'n02113978', 'n02114367',
'n02114548', 'n02114712', 'n02114855', 'n02115641', 'n02115913',
'n02116738', 'n02117135', 'n02119022', 'n02119789', 'n02120079',
'n02120505', 'n02123045', 'n02123159', 'n02123394', 'n02123597',
'n02124075', 'n02125311', 'n02127052', 'n02128385', 'n02128757',
'n02128925', 'n02129165', 'n02129604', 'n02130308', 'n02132136',
'n02133161', 'n02134084', 'n02134418', 'n02137549', 'n02138441',
'n02165105', 'n02165456', 'n02167151', 'n02168699', 'n02169497',
'n02172182', 'n02174001', 'n02177972', 'n02190166', 'n02206856',
'n02219486', 'n02226429', 'n02229544', 'n02231487', 'n02233338',
'n02236044', 'n02256656', 'n02259212', 'n02264363', 'n02268443',
'n02268853', 'n02276258', 'n02277742', 'n02279972', 'n02280649',
'n02281406', 'n02281787', 'n02317335', 'n02319095', 'n02321529',
'n02325366', 'n02326432', 'n02328150', 'n02342885', 'n02346627',
'n02356798', 'n02361337', 'n02363005', 'n02364673', 'n02389026',
'n02391049', 'n02395406', 'n02396427', 'n02397096', 'n02398521',
'n02403003', 'n02408429', 'n02410509', 'n02412080', 'n02415577',
'n02417914', 'n02422106', 'n02422699', 'n02423022', 'n02437312',
'n02437616', 'n02441942', 'n02442845', 'n02443114', 'n02443484',
'n02444819', 'n02445715', 'n02447366', 'n02454379', 'n02457408',
'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02483708',
'n02484975', 'n02486261', 'n02486410', 'n02487347', 'n02488291',
'n02488702', 'n02489166', 'n02490219', 'n02492035', 'n02492660',
'n02493509', 'n02493793', 'n02494079', 'n02497673', 'n02500267',
'n02504013', 'n02504458', 'n02509815', 'n02510455', 'n02514041',
'n02526121', 'n02536864', 'n02606052', 'n02607072', 'n02640242',
'n02641379', 'n02643566', 'n02655020', 'n02666196', 'n02667093',
'n02669723', 'n02672831', 'n02676566', 'n02687172', 'n02690373',
'n02692877', 'n02699494', 'n02701002', 'n02704792', 'n02708093',
'n02727426', 'n02730930', 'n02747177', 'n02749479', 'n02769748',
'n02776631', 'n02777292', 'n02782093', 'n02783161', 'n02786058',
'n02787622', 'n02788148', 'n02790996', 'n02791124', 'n02791270',
'n02793495', 'n02794156', 'n02795169', 'n02797295', 'n02799071',
'n02802426', 'n02804414', 'n02804610', 'n02807133', 'n02808304',
'n02808440', 'n02814533', 'n02814860', 'n02815834', 'n02817516',
'n02823428', 'n02823750', 'n02825657', 'n02834397', 'n02835271',
'n02837789', 'n02840245', 'n02841315', 'n02843684', 'n02859443',
'n02860847', 'n02865351', 'n02869837', 'n02870880', 'n02871525',
'n02877765', 'n02879718', 'n02883205', 'n02892201', 'n02892767',
'n02894605', 'n02895154', 'n02906734', 'n02909870', 'n02910353',
'n02916936', 'n02917067', 'n02927161', 'n02930766', 'n02939185',
'n02948072', 'n02950826', 'n02951358', 'n02951585', 'n02963159',
'n02965783', 'n02966193', 'n02966687', 'n02971356', 'n02974003',
'n02977058', 'n02978881', 'n02979186', 'n02980441', 'n02981792',
'n02988304', 'n02992211', 'n02992529', 'n02999410', 'n03000134',
'n03000247', 'n03000684', 'n03014705', 'n03016953', 'n03017168',
'n03018349', 'n03026506', 'n03028079', 'n03032252', 'n03041632',
'n03042490', 'n03045698', 'n03047690', 'n03062245', 'n03063599',
'n03063689', 'n03065424', 'n03075370', 'n03085013', 'n03089624',
'n03095699', 'n03100240', 'n03109150', 'n03110669', 'n03124043',
'n03124170', 'n03125729', 'n03126707', 'n03127747', 'n03127925',
'n03131574', 'n03133878', 'n03134739', 'n03141823', 'n03146219',
'n03160309', 'n03179701', 'n03180011', 'n03187595', 'n03188531',
'n03196217', 'n03197337', 'n03201208', 'n03207743', 'n03207941',
'n03208938', 'n03216828', 'n03218198', 'n03220513', 'n03223299',
'n03240683', 'n03249569', 'n03250847', 'n03255030', 'n03259280',
'n03271574', 'n03272010', 'n03272562', 'n03290653', 'n03291819',
'n03297495', 'n03314780', 'n03325584', 'n03337140', 'n03344393',
'n03345487', 'n03347037', 'n03355925', 'n03372029', 'n03376595',
'n03379051', 'n03384352', 'n03388043', 'n03388183', 'n03388549',
'n03393912', 'n03394916', 'n03400231', 'n03404251', 'n03417042',
'n03424325', 'n03425413', 'n03443371', 'n03444034', 'n03445777',
'n03445924', 'n03447447', 'n03447721', 'n03450230', 'n03452741',
'n03457902', 'n03459775', 'n03461385', 'n03467068', 'n03476684',
'n03476991', 'n03478589', 'n03481172', 'n03482405', 'n03483316',
'n03485407', 'n03485794', 'n03492542', 'n03494278', 'n03495258',
'n03496892', 'n03498962', 'n03527444', 'n03529860', 'n03530642',
'n03532672', 'n03534580', 'n03535780', 'n03538406', 'n03544143',
'n03584254', 'n03584829', 'n03590841', 'n03594734', 'n03594945',
'n03595614', 'n03598930', 'n03599486', 'n03602883', 'n03617480',
'n03623198', 'n03627232', 'n03630383', 'n03633091', 'n03637318',
'n03642806', 'n03649909', 'n03657121', 'n03658185', 'n03661043',
'n03662601', 'n03666591', 'n03670208', 'n03673027', 'n03676483',
'n03680355', 'n03690938', 'n03691459', 'n03692522', 'n03697007',
'n03706229', 'n03709823', 'n03710193', 'n03710637', 'n03710721',
'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03729826',
'n03733131', 'n03733281', 'n03733805', 'n03742115', 'n03743016',
'n03759954', 'n03761084', 'n03763968', 'n03764736', 'n03769881',
'n03770439', 'n03770679', 'n03773504', 'n03775071', 'n03775546',
'n03776460', 'n03777568', 'n03777754', 'n03781244', 'n03782006',
'n03785016', 'n03786901', 'n03787032', 'n03788195', 'n03788365',
'n03791053', 'n03792782', 'n03792972', 'n03793489', 'n03794056',
'n03796401', 'n03803284', 'n03804744', 'n03814639', 'n03814906',
'n03825788', 'n03832673', 'n03837869', 'n03838899', 'n03840681',
'n03841143', 'n03843555', 'n03854065', 'n03857828', 'n03866082',
'n03868242', 'n03868863', 'n03871628', 'n03873416', 'n03874293',
'n03874599', 'n03876231', 'n03877472', 'n03877845', 'n03884397',
'n03887697', 'n03888257', 'n03888605', 'n03891251', 'n03891332',
'n03895866', 'n03899768', 'n03902125', 'n03903868', 'n03908618',
'n03908714', 'n03916031', 'n03920288', 'n03924679', 'n03929660',
'n03929855', 'n03930313', 'n03930630', 'n03933933', 'n03935335',
'n03937543', 'n03938244', 'n03942813', 'n03944341', 'n03947888',
'n03950228', 'n03954731', 'n03956157', 'n03958227', 'n03961711',
'n03967562', 'n03970156', 'n03976467', 'n03976657', 'n03977966',
'n03980874', 'n03982430', 'n03983396', 'n03991062', 'n03992509',
'n03995372', 'n03998194', 'n04004767', 'n04005630', 'n04008634',
'n04009552', 'n04019541', 'n04023962', 'n04026417', 'n04033901',
'n04033995', 'n04037443', 'n04039381', 'n04040759', 'n04041544',
'n04044716', 'n04049303', 'n04065272', 'n04067472', 'n04069434',
'n04070727', 'n04074963', 'n04081281', 'n04086273', 'n04090263',
'n04099969', 'n04111531', 'n04116512', 'n04118538', 'n04118776',
'n04120489', 'n04125021', 'n04127249', 'n04131690', 'n04133789',
'n04136333', 'n04141076', 'n04141327', 'n04141975', 'n04146614',
'n04147183', 'n04149813', 'n04152593', 'n04153751', 'n04154565',
'n04162706', 'n04179913', 'n04192698', 'n04200800', 'n04201297',
'n04204238', 'n04204347', 'n04208210', 'n04209133', 'n04209239',
'n04228054', 'n04229816', 'n04235860', 'n04238763', 'n04239074',
'n04243546', 'n04251144', 'n04252077', 'n04252225', 'n04254120',
'n04254680', 'n04254777', 'n04258138', 'n04259630', 'n04263257',
'n04264628', 'n04265275', 'n04266014', 'n04270147', 'n04273569',
'n04275548', 'n04277352', 'n04285008', 'n04286575', 'n04296562',
'n04310018', 'n04311004', 'n04311174', 'n04317175', 'n04325704',
'n04326547', 'n04328186', 'n04330267', 'n04332243', 'n04335435',
'n04336792', 'n04344873', 'n04346328', 'n04347754', 'n04350905',
'n04355338', 'n04355933', 'n04356056', 'n04357314', 'n04366367',
'n04367480', 'n04370456', 'n04371430', 'n04371774', 'n04372370',
'n04376876', 'n04380533', 'n04389033', 'n04392985', 'n04398044',
'n04399382', 'n04404412', 'n04409515', 'n04417672', 'n04418357',
'n04423845', 'n04428191', 'n04429376', 'n04435653', 'n04442312',
'n04443257', 'n04447861', 'n04456115', 'n04458633', 'n04461696',
'n04462240', 'n04465501', 'n04467665', 'n04476259', 'n04479046',
'n04482393', 'n04483307', 'n04485082', 'n04486054', 'n04487081',
'n04487394', 'n04493381', 'n04501370', 'n04505470', 'n04507155',
'n04509417', 'n04515003', 'n04517823', 'n04522168', 'n04523525',
'n04525038', 'n04525305', 'n04532106', 'n04532670', 'n04536866',
'n04540053', 'n04542943', 'n04548280', 'n04548362', 'n04550184',
'n04552348', 'n04553703', 'n04554684', 'n04557648', 'n04560804',
'n04562935', 'n04579145', 'n04579432', 'n04584207', 'n04589890',
'n04590129', 'n04591157', 'n04591713', 'n04592741', 'n04596742',
'n04597913', 'n04599235', 'n04604644', 'n04606251', 'n04612504',
'n04613696', 'n06359193', 'n06596364', 'n06785654', 'n06794110',
'n06874185', 'n07248320', 'n07565083', 'n07579787', 'n07583066',
'n07584110', 'n07590611', 'n07613480', 'n07614500', 'n07615774',
'n07684084', 'n07693725', 'n07695742', 'n07697313', 'n07697537',
'n07711569', 'n07714571', 'n07714990', 'n07715103', 'n07716358',
'n07716906', 'n07717410', 'n07717556', 'n07718472', 'n07718747',
'n07720875', 'n07730033', 'n07734744', 'n07742313', 'n07745940',
'n07747607', 'n07749582', 'n07753113', 'n07753275', 'n07753592',
'n07754684', 'n07760859', 'n07768694', 'n07802026', 'n07831146',
'n07836838', 'n07860988', 'n07871810', 'n07873807', 'n07875152',
'n07880968', 'n07892512', 'n07920052', 'n07930864', 'n07932039',
'n09193705', 'n09229709', 'n09246464', 'n09256479', 'n09288635',
'n09332890', 'n09399592', 'n09421951', 'n09428293', 'n09468604',
'n09472597', 'n09835506', 'n10148035', 'n10565667', 'n11879895',
'n11939491', 'n12057211', 'n12144580', 'n12267677', 'n12620546',
'n12768682', 'n12985857', 'n12998815', 'n13037406', 'n13040303',
'n13044778', 'n13052670', 'n13054560', 'n13133613', 'n15075141'
]
imagenet_a_wnids = [
'n01498041', 'n01531178', 'n01534433', 'n01558993', 'n01580077',
'n01614925', 'n01616318', 'n01631663', 'n01641577', 'n01669191',
'n01677366', 'n01687978', 'n01694178', 'n01698640', 'n01735189',
'n01770081', 'n01770393', 'n01774750', 'n01784675', 'n01819313',
'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672',
'n01882714', 'n01910747', 'n01914609', 'n01924916', 'n01944390',
'n01985128', 'n01986214', 'n02007558', 'n02009912', 'n02037110',
'n02051845', 'n02077923', 'n02085620', 'n02099601', 'n02106550',
'n02106662', 'n02110958', 'n02119022', 'n02123394', 'n02127052',
'n02129165', 'n02133161', 'n02137549', 'n02165456', 'n02174001',
'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429',
'n02231487', 'n02233338', 'n02236044', 'n02259212', 'n02268443',
'n02279972', 'n02280649', 'n02281787', 'n02317335', 'n02325366',
'n02346627', 'n02356798', 'n02361337', 'n02410509', 'n02445715',
'n02454379', 'n02486410', 'n02492035', 'n02504458', 'n02655020',
'n02669723', 'n02672831', 'n02676566', 'n02690373', 'n02701002',
'n02730930', 'n02777292', 'n02782093', 'n02787622', 'n02793495',
'n02797295', 'n02802426', 'n02814860', 'n02815834', 'n02837789',
'n02879718', 'n02883205', 'n02895154', 'n02906734', 'n02948072',
'n02951358', 'n02980441', 'n02992211', 'n02999410', 'n03014705',
'n03026506', 'n03124043', 'n03125729', 'n03187595', 'n03196217',
'n03223299', 'n03250847', 'n03255030', 'n03291819', 'n03325584',
'n03355925', 'n03384352', 'n03388043', 'n03417042', 'n03443371',
'n03444034', 'n03445924', 'n03452741', 'n03483316', 'n03584829',
'n03590841', 'n03594945', 'n03617480', 'n03666591', 'n03670208',
'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03775071',
'n03788195', 'n03804744', 'n03837869', 'n03840681', 'n03854065',
'n03888257', 'n03891332', 'n03935335', 'n03982430', 'n04019541',
'n04033901', 'n04039381', 'n04067472', 'n04086273', 'n04099969',
'n04118538', 'n04131690', 'n04133789', 'n04141076', 'n04146614',
'n04147183', 'n04179913', 'n04208210', 'n04235860', 'n04252077',
'n04252225', 'n04254120', 'n04270147', 'n04275548', 'n04310018',
'n04317175', 'n04344873', 'n04347754', 'n04355338', 'n04366367',
'n04376876', 'n04389033', 'n04399382', 'n04442312', 'n04456115',
'n04482393', 'n04507155', 'n04509417', 'n04532670', 'n04540053',
'n04554684', 'n04562935', 'n04591713', 'n04606251', 'n07583066',
'n07695742', 'n07697313', 'n07697537', 'n07714990', 'n07718472',
'n07720875', 'n07734744', 'n07749582', 'n07753592', 'n07760859',
'n07768694', 'n07831146', 'n09229709', 'n09246464', 'n09472597',
'n09835506', 'n11879895', 'n12057211', 'n12144580', 'n12267677'
]
imagenet_a_mask = [wnid in set(imagenet_a_wnids) for wnid in all_wnids]
imagenet_r_wnids = {
'n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859',
'n01518878', 'n01531178', 'n01534433', 'n01614925', 'n01616318',
'n01630670', 'n01632777', 'n01644373', 'n01677366', 'n01694178',
'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143',
'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672',
'n01860187', 'n01882714', 'n01910747', 'n01944390', 'n01983481',
'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570',
'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240',
'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02091032',
'n02091134', 'n02092339', 'n02094433', 'n02096585', 'n02097298',
'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030',
'n02106166', 'n02106550', 'n02106662', 'n02108089', 'n02108915',
'n02109525', 'n02110185', 'n02110341', 'n02110958', 'n02112018',
'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367',
'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757',
'n02129165', 'n02129604', 'n02130308', 'n02134084', 'n02138441',
'n02165456', 'n02190166', 'n02206856', 'n02219486', 'n02226429',
'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335',
'n02325366', 'n02346627', 'n02356798', 'n02363005', 'n02364673',
'n02391049', 'n02395406', 'n02398521', 'n02410509', 'n02423022',
'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855',
'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121',
'n02607072', 'n02655020', 'n02672831', 'n02701002', 'n02749479',
'n02769748', 'n02793495', 'n02797295', 'n02802426', 'n02808440',
'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205',
'n02906734', 'n02909870', 'n02939185', 'n02948072', 'n02950826',
'n02951358', 'n02966193', 'n02980441', 'n02992529', 'n03124170',
'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741',
'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962',
'n03594945', 'n03602883', 'n03630383', 'n03649909', 'n03676483',
'n03710193', 'n03773504', 'n03775071', 'n03888257', 'n03930630',
'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076',
'n04146614', 'n04147183', 'n04192698', 'n04254680', 'n04266014',
'n04275548', 'n04310018', 'n04325704', 'n04347754', 'n04389033',
'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866',
'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742',
'n07697313', 'n07697537', 'n07714571', 'n07714990', 'n07718472',
'n07720875', 'n07734744', 'n07742313', 'n07745940', 'n07749582',
'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968',
'n07920052', 'n09472597', 'n09835506', 'n10565667', 'n12267677'
}
imagenet_r_mask = [wnid in imagenet_r_wnids for wnid in all_wnids]
# --------------------------------------------------------
# EVA: Exploring the Limits of Masked Visual Representation Learning at Scale (https://arxiv.org/abs/2211.07636)
# Github source: https://github.com/baaivision/EVA
# Copyright (c) 2022 Beijing Academy of Artificial Intelligence (BAAI)
# Licensed under The MIT License [see LICENSE for details]
# By Yuxin Fang
# Based on timm, DINO, DeiT and BEiT codebases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------'
import json
import os
import numpy as np
class RealLabelsImagenet:
def __init__(self, filenames, real_json='real.json', topk=(1, 5)):
with open(real_json) as real_labels:
real_labels = json.load(real_labels)
real_labels = {f'ILSVRC2012_val_{i + 1:08d}.JPEG': labels for i, labels in enumerate(real_labels)}
self.real_labels = real_labels
self.filenames = filenames
assert len(self.filenames) == len(self.real_labels)
self.topk = topk
self.is_correct = {k: [] for k in topk}
self.sample_idx = 0
def add_result(self, output):
maxk = max(self.topk)
_, pred_batch = output.topk(maxk, 1, True, True)
pred_batch = pred_batch.cpu().numpy()
for pred in pred_batch:
filename = self.filenames[self.sample_idx]
filename = os.path.basename(filename)
if self.real_labels[filename]:
for k in self.topk:
self.is_correct[k].append(
any([p in self.real_labels[filename] for p in pred[:k]]))
self.sample_idx += 1
def get_accuracy(self, k=None):
if k is None:
return {k: float(np.mean(self.is_correct[k] for k in self.topk))}
else:
return float(np.mean(self.is_correct[k])) * 100
"""Code from https://github.com/mlfoundations/wise-ft/blob/master/src/datasets/imagenetv2.py
Thanks to the authors of wise-ft."""
import pathlib
import shutil
import tarfile
import requests
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm
URLS = {'matched-frequency': 'https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-matched-frequency.tar.gz',
'threshold-0.7': 'https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-threshold0.7.tar.gz',
'top-images': 'https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-top-images.tar.gz',
'val': 'https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenet_validation.tar.gz'}
FNAMES = {'matched-frequency': 'imagenetv2-matched-frequency-format-val',
'threshold-0.7': 'imagenetv2-threshold0.7-format-val',
'top-images': 'imagenetv2-top-images-format-val',
'val': 'imagenet_validation'}
V2_DATASET_SIZE = 10000
VAL_DATASET_SIZE = 50000
class ImageNetV2Dataset(Dataset):
def __init__(self, variant='matched-frequency', transform=None, location='.'):
self.dataset_root = pathlib.Path(f'{location}/ImageNetV2-{variant}/')
self.tar_root = pathlib.Path(f'{location}/ImageNetV2-{variant}.tar.gz')
self.fnames = list(self.dataset_root.glob('**/*.jpeg'))
self.transform = transform
assert variant in URLS, f'unknown V2 Variant: {variant}'
if not self.dataset_root.exists() or len(self.fnames) != V2_DATASET_SIZE:
if not self.tar_root.exists():
print(f'Dataset {variant} not found on disk, downloading....')
response = requests.get(URLS[variant], stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(self.tar_root, 'wb') as f:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
f.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
assert False, f'Downloading from {URLS[variant]} failed'
print('Extracting....')
tarfile.open(self.tar_root).extractall(f'{location}')
shutil.move(f'{location}/{FNAMES[variant]}', self.dataset_root)
self.fnames = list(self.dataset_root.glob('**/*.jpeg'))
def __len__(self):
return len(self.fnames)
def __getitem__(self, i):
img, label = Image.open(self.fnames[i]), int(self.fnames[i].parent.name)
if self.transform is not None:
img = self.transform(img)
return img, label
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import math
import os
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
class SubsetRandomSampler(torch.utils.data.Sampler):
"""Samples elements randomly from a given list of indices, without
replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.epoch = 0
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in torch.randperm(len(self.indices)))
def __len__(self):
return len(self.indices)
def set_epoch(self, epoch):
self.epoch = epoch
class NodeDistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self,
dataset,
num_replicas=None,
rank=None,
local_rank=None,
local_size=None):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError(
'Requires distributed package to be available')
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError(
'Requires distributed package to be available')
rank = dist.get_rank()
if local_rank is None:
local_rank = int(os.environ.get('LOCAL_RANK', 0))
if local_size is None:
local_size = int(os.environ.get('LOCAL_SIZE', 1))
self.dataset = dataset
self.num_replicas = num_replicas
self.num_parts = local_size
self.rank = rank
self.local_rank = local_rank
self.epoch = 0
self.num_samples = int(
math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.total_size_parts = self.num_samples * self.num_replicas // self.num_parts
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
t = torch.Generator()
t.manual_seed(0)
indices = torch.randperm(len(self.dataset), generator=t).tolist()
# indices = range(len(self.dataset))
indices = [i for i in indices if i % self.num_parts == self.local_rank]
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size_parts - len(indices))]
assert len(indices) == self.total_size_parts
# subsample
indices = indices[self.rank // self.num_parts:self.
total_size_parts:self.num_replicas // self.num_parts]
index = torch.randperm(len(indices), generator=g).tolist()
indices = list(np.array(indices)[index])
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import io
import os
import zipfile
import numpy as np
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def is_zip_path(img_or_path):
"""judge if this is a zip path."""
return '.zip@' in img_or_path
class ZipReader(object):
"""A class to read zipped files."""
zip_bank = dict()
def __init__(self):
super(ZipReader, self).__init__()
@staticmethod
def get_zipfile(path):
zip_bank = ZipReader.zip_bank
if path not in zip_bank:
zfile = zipfile.ZipFile(path, 'r')
zip_bank[path] = zfile
return zip_bank[path]
@staticmethod
def split_zip_style_path(path):
pos_at = path.index('@')
assert pos_at != -1, "character '@' is not found from the given path '%s'" % path
zip_path = path[0:pos_at]
folder_path = path[pos_at + 1:]
folder_path = str.strip(folder_path, '/')
return zip_path, folder_path
@staticmethod
def list_folder(path):
zip_path, folder_path = ZipReader.split_zip_style_path(path)
zfile = ZipReader.get_zipfile(zip_path)
folder_list = []
for file_foler_name in zfile.namelist():
file_foler_name = str.strip(file_foler_name, '/')
if file_foler_name.startswith(folder_path) and \
len(os.path.splitext(file_foler_name)[-1]) == 0 and \
file_foler_name != folder_path:
if len(folder_path) == 0:
folder_list.append(file_foler_name)
else:
folder_list.append(file_foler_name[len(folder_path) + 1:])
return folder_list
@staticmethod
def list_files(path, extension=None):
if extension is None:
extension = ['.*']
zip_path, folder_path = ZipReader.split_zip_style_path(path)
zfile = ZipReader.get_zipfile(zip_path)
file_lists = []
for file_foler_name in zfile.namelist():
file_foler_name = str.strip(file_foler_name, '/')
if file_foler_name.startswith(folder_path) and \
str.lower(os.path.splitext(file_foler_name)[-1]) in extension:
if len(folder_path) == 0:
file_lists.append(file_foler_name)
else:
file_lists.append(file_foler_name[len(folder_path) + 1:])
return file_lists
@staticmethod
def read(path):
zip_path, path_img = ZipReader.split_zip_style_path(path)
zfile = ZipReader.get_zipfile(zip_path)
data = zfile.read(path_img)
return data
@staticmethod
def imread(path):
zip_path, path_img = ZipReader.split_zip_style_path(path)
zfile = ZipReader.get_zipfile(zip_path)
data = zfile.read(path_img)
try:
im = Image.open(io.BytesIO(data))
except:
print('ERROR IMG LOADED: ', path_img)
random_img = np.random.rand(224, 224, 3) * 255
im = Image.fromarray(np.uint8(random_img))
return im
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Any, Callable
import torch
import torch.distributed as dist
def _allreduce_fut(process_group: dist.ProcessGroup,
tensor: torch.Tensor) -> torch.futures.Future[torch.Tensor]:
'Averages the input gradient tensor by allreduce and returns a future.'
group_to_use = process_group if process_group is not None else dist.group.WORLD
# Apply the division first to avoid overflow, especially for FP16.
tensor.div_(group_to_use.size())
return (dist.all_reduce(
tensor, group=group_to_use,
async_op=True).get_future().then(lambda fut: fut.value()[0]))
def allreduce_hook(
process_group: dist.ProcessGroup,
bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
"""
This DDP communication hook just calls ``allreduce`` using ``GradBucket``
tensors. Once gradient tensors are aggregated across all workers, its ``then``
callback takes the mean and returns the result. If user registers this hook,
DDP results is expected to be same as the case where no hook was registered.
Hence, this won't change behavior of DDP and user can use this as a reference
or modify this hook to log useful information or any other purposes while
unaffecting DDP behavior.
Example::
>>> ddp_model.register_comm_hook(process_group, allreduce_hook)
"""
return _allreduce_fut(process_group, bucket.buffer())
def fp16_compress_hook(
process_group: dist.ProcessGroup,
bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
"""
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensor to half-precision floating-point format (``torch.float16``)
and then divides it by the process group size.
It allreduces those ``float16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
Example::
>>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
"""
group_to_use = process_group if process_group is not None else dist.group.WORLD
world_size = group_to_use.size()
compressed_tensor = bucket.buffer().to(torch.float16).div_(world_size)
fut = dist.all_reduce(compressed_tensor, group=group_to_use,
async_op=True).get_future()
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value()[0])
return decompressed_tensor
return fut.then(decompress)
# TODO: create an internal helper function and extract the duplicate code in FP16_compress and BF16_compress.
def bf16_compress_hook(
process_group: dist.ProcessGroup,
bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
"""
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensor to half-precision
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_ (``torch.bfloat16``)
and then divides it by the process group size.
It allreduces those ``bfloat16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
Example::
>>> ddp_model.register_comm_hook(process_group, bf16_compress_hook)
"""
group_to_use = process_group if process_group is not None else dist.group.WORLD
world_size = group_to_use.size()
compressed_tensor = bucket.buffer().to(torch.bfloat16).div_(world_size)
fut = dist.all_reduce(compressed_tensor, group=group_to_use,
async_op=True).get_future()
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value()[0])
return decompressed_tensor
return fut.then(decompress)
def fp16_compress_wrapper(
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
"""
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
floating point format (``torch.float16``), and casts the resulting tensor of the given hook back to
the input data type, such as ``float32``.
Therefore, ``fp16_compress_hook`` is equivalent to ``fp16_compress_wrapper(allreduce_hook)``.
Example::
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
>>> ddp_model.register_comm_hook(state, fp16_compress_wrapper(powerSGD_hook))
"""
def fp16_compress_wrapper_hook(
hook_state,
bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
# Cast bucket tensor to FP16.
bucket.set_buffer(bucket.buffer().to(torch.float16))
fut = hook(hook_state, bucket)
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value())
return decompressed_tensor
# Decompress after hook has run.
return fut.then(decompress)
return fp16_compress_wrapper_hook
def bf16_compress_wrapper(
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
"""
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format> `_ (``torch.bfloat16``),
and casts the resulting tensor of the given hook back to the input data type, such as ``float32``.
Therefore, ``bf16_compress_hook`` is equivalent to ``bf16_compress_wrapper(allreduce_hook)``.
Example::
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
>>> ddp_model.register_comm_hook(state, bf16_compress_wrapper(powerSGD_hook))
"""
def bf16_compress_wrapper_hook(
hook_state,
bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
# Cast bucket tensor to BF16.
bucket.set_buffer(bucket.buffer().to(torch.bfloat16))
fut = hook(hook_state, bucket)
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value())
return decompressed_tensor
# Decompress after hook has run.
return fut.then(decompress)
return bf16_compress_wrapper_hook
from contextlib import contextmanager
import deepspeed
import torch
import torch.nn as nn
from deepspeed.runtime.zero import GatheredParameters
class EMADeepspeed(nn.Module):
""" migrated from https://github.com/microsoft/DeepSpeed/issues/2056
"""
def __init__(self, model, decay=0.9999, use_num_updates=True):
super().__init__()
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.m_name2s_name = {}
self.decay = decay
self.num_updates = 0 if use_num_updates else -1
with GatheredParameters(model.parameters(), fwd_module=self):
for name, p in model.named_parameters():
if p.requires_grad:
# remove as '.'-character is not allowed in buffers
s_name = name.replace('.', '')
self.m_name2s_name.update({name: s_name})
self.register_buffer(s_name, p.clone().detach().data)
# remove as '.'-character is not allowed in buffers
self.collected_params = []
def forward(self, model):
decay = self.decay
if self.num_updates >= 0:
self.num_updates += 1
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
shadow_params = dict(self.named_buffers())
with torch.no_grad():
with GatheredParameters(model.parameters()):
if deepspeed.comm.get_rank() == 0:
m_param = dict(model.named_parameters())
for key in m_param:
if m_param[key].requires_grad:
sname = self.m_name2s_name[key]
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
else:
assert key not in self.m_name2s_name
def copy_to(self, model):
shadow_params = dict(self.named_buffers())
with GatheredParameters(model.parameters(), modifier_rank=0):
if deepspeed.comm.get_rank() == 0:
m_param = dict(model.named_parameters())
for key in m_param:
if m_param[key].requires_grad:
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
else:
assert key not in self.m_name2s_name
def store(self, model):
"""
Save the current parameters for restoring later.
Args:
model: A model that parameters will be stored
"""
with GatheredParameters(model.parameters()):
if deepspeed.comm.get_rank() == 0:
parameters = model.parameters()
self.collected_params = [param.clone() for param in parameters]
def restore(self, model):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
model: A model that to restore its parameters.
"""
with GatheredParameters(model.parameters(), modifier_rank=0):
if deepspeed.comm.get_rank() == 0:
parameters = model.parameters()
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
@contextmanager
def activate(self, model):
try:
self.store(model)
self.copy_to(model)
yield
finally:
self.restore(model)
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import os
import time
import torch
from config import get_config
from models import build_model
from tqdm import tqdm
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str,
default='internimage_t_1k_224')
parser.add_argument('--ckpt_dir', type=str,
default='/mnt/petrelfs/share_data/huangzhenhang/code/internimage/checkpoint_dir/new/cls')
parser.add_argument('--onnx', default=False, action='store_true')
parser.add_argument('--trt', default=False, action='store_true')
args = parser.parse_args()
args.cfg = os.path.join('./configs', f'{args.model_name}.yaml')
args.ckpt = os.path.join(args.ckpt_dir, f'{args.model_name}.pth')
args.size = int(args.model_name.split('.')[0].split('_')[-1])
cfg = get_config(args)
return args, cfg
def get_model(args, cfg):
model = build_model(cfg)
ckpt = torch.load(args.ckpt, map_location='cpu')['model']
model.load_state_dict(ckpt)
return model
def speed_test(model, input):
# warm-up
for _ in tqdm(range(100)):
_ = model(input)
# speed test
torch.cuda.synchronize()
start = time.time()
for _ in tqdm(range(100)):
_ = model(input)
end = time.time()
th = 100 / (end - start)
print(f'using time: {end - start}, throughput {th}')
def torch2onnx(args, cfg):
model = get_model(args, cfg).cuda()
# speed_test(model)
onnx_name = f'{args.model_name}.onnx'
torch.onnx.export(model,
torch.rand(1, 3, args.size, args.size).cuda(),
onnx_name,
input_names=['input'],
output_names=['output'])
return model
def onnx2trt(args):
from mmdeploy.backend.tensorrt import from_onnx
onnx_name = f'{args.model_name}.onnx'
from_onnx(
onnx_name,
args.model_name,
dict(
input=dict(
min_shape=[1, 3, args.size, args.size],
opt_shape=[1, 3, args.size, args.size],
max_shape=[1, 3, args.size, args.size],
)
),
max_workspace_size=2 ** 30,
)
def check(args, cfg):
from mmdeploy.backend.tensorrt.wrapper import TRTWrapper
model = get_model(args, cfg).cuda()
model.eval()
trt_model = TRTWrapper(f'{args.model_name}.engine',
['output'])
x = torch.randn(1, 3, args.size, args.size).cuda()
torch_out = model(x)
trt_out = trt_model(dict(input=x))['output']
print('torch out shape:', torch_out.shape)
print('trt out shape:', trt_out.shape)
print('max delta:', (torch_out - trt_out).abs().max())
print('mean delta:', (torch_out - trt_out).abs().mean())
speed_test(model, x)
speed_test(trt_model, dict(input=x))
def main():
args, cfg = get_args()
if args.onnx or args.trt:
torch2onnx(args, cfg)
print('torch -> onnx: succeess')
if args.trt:
onnx2trt(args)
print('onnx -> trt: success')
check(args, cfg)
if __name__ == '__main__':
main()
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import time
import torch
from mmcv.cnn import get_model_complexity_info
from mmcv.cnn.utils.flops_counter import flops_to_string, params_to_string
from models.intern_vit_6b import InternViT6B
from tqdm import tqdm
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('config', nargs='?', type=str, default=None)
args = parser.parse_args()
configs = {
'a': {
'embed_dim': 3968,
'num_heads': 62,
'mlp_ratio': 4,
'depth': 32
},
'e': {
'embed_dim': 3200,
'num_heads': 50,
'mlp_ratio': 4,
'depth': 48
},
'f': {
'embed_dim': 3200,
'num_heads': 25,
'mlp_ratio': 4,
'depth': 48
},
'g': {
'embed_dim': 2496,
'num_heads': 39,
'mlp_ratio': 8,
'depth': 48
},
'i': {
'embed_dim': 2816,
'num_heads': 44,
'mlp_ratio': 4,
'depth': 64
},
'm': {
'embed_dim': 2496,
'num_heads': 39,
'mlp_ratio': 4,
'depth': 80
},
}
def sa_flops(h, w, dim):
return 2 * h * w * h * w * dim
def get_flops(model, input_shape):
flops, params = get_model_complexity_info(model,
input_shape,
as_strings=False)
_, H, W = input_shape
print(flops, params)
for i in range(model.depth):
flops += sa_flops(H // model.patch_size, W // model.patch_size,
model.embed_dim)
return flops_to_string(flops), params_to_string(params)
if __name__ == '__main__':
input_shape = (3, 224, 224)
config = configs[args.config]
print(config)
model = InternViT6B(in_chans=3,
patch_size=14,
img_size=224,
pretrain_size=224,
qkv_bias=False,
drop_path_rate=0.0,
embed_dim=config['embed_dim'],
num_heads=config['num_heads'],
mlp_ratio=config['mlp_ratio'],
init_values=0.1,
qk_normalization=True,
depth=config['depth'],
use_flash_attn=True,
with_cp=True,
freeze_vit=True,
cls_target='cls_patch_concat',
num_classes=0,
attn_pool_num_heads=16,
clip_embed_dim=768,
head_norm_type='bn').to(torch.bfloat16)
for k, v in model.named_parameters():
v.requires_grad = True
if torch.cuda.is_available():
model.cuda()
model.eval()
flops, params = get_flops(model, input_shape)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
image = torch.rand(128, 3, 224, 224).to(torch.bfloat16).cuda()
torch.cuda.synchronize()
start_time = time.time()
with torch.no_grad():
for i in tqdm(range(10)):
out = model(image)
torch.cuda.synchronize()
end_time = time.time()
print('warmup time: ', end_time - start_time)
torch.cuda.synchronize()
start_time = time.time()
with torch.no_grad():
for i in tqdm(range(50)):
out = model(image)
torch.cuda.synchronize()
end_time = time.time()
print('using time: ', (end_time - start_time))
print('FPS: ', 50 * 128 / (end_time - start_time))
print(config)
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import functools
import logging
import os
import sys
from termcolor import colored
@functools.lru_cache()
def create_logger(output_dir, dist_rank=0, name=''):
# create logger
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
logger.propagate = False
# create formatter
fmt = '[%(asctime)s %(name)s] (%(filename)s %(lineno)d): %(levelname)s %(message)s'
color_fmt = colored('[%(asctime)s %(name)s]', 'green') + \
colored('(%(filename)s %(lineno)d)', 'yellow') + \
': %(levelname)s %(message)s'
# create console handlers for master process
if dist_rank == 0:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(
logging.Formatter(fmt=color_fmt, datefmt='%Y-%m-%d %H:%M:%S'))
logger.addHandler(console_handler)
# create file handlers
file_handler = logging.FileHandler(os.path.join(
output_dir, f'log_rank{dist_rank}.txt'),
mode='a')
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter(fmt=fmt, datefmt='%Y-%m-%d %H:%M:%S'))
logger.addHandler(file_handler)
return logger
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import torch
from timm.scheduler.cosine_lr import CosineLRScheduler
from timm.scheduler.scheduler import Scheduler
from timm.scheduler.step_lr import StepLRScheduler
def build_scheduler(config, optimizer, n_iter_per_epoch):
num_steps = int(config.TRAIN.EPOCHS * n_iter_per_epoch)
warmup_steps = int(config.TRAIN.WARMUP_EPOCHS * n_iter_per_epoch)
decay_steps = int(config.TRAIN.LR_SCHEDULER.DECAY_EPOCHS *
n_iter_per_epoch)
lr_scheduler = None
if config.TRAIN.LR_SCHEDULER.NAME == 'cosine':
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=num_steps,
# t_mul=1.,
lr_min=config.TRAIN.MIN_LR,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
cycle_limit=1,
t_in_epochs=False,
)
elif config.TRAIN.LR_SCHEDULER.NAME == 'linear':
lr_scheduler = LinearLRScheduler(
optimizer,
t_initial=num_steps,
lr_min_rate=0.01,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
t_in_epochs=False,
)
elif config.TRAIN.LR_SCHEDULER.NAME == 'step':
lr_scheduler = StepLRScheduler(
optimizer,
decay_t=decay_steps,
decay_rate=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
warmup_lr_init=config.TRAIN.WARMUP_LR,
warmup_t=warmup_steps,
t_in_epochs=False,
)
return lr_scheduler
class LinearLRScheduler(Scheduler):
def __init__(
self,
optimizer: torch.optim.Optimizer,
t_initial: int,
lr_min_rate: float,
warmup_t=0,
warmup_lr_init=0.,
t_in_epochs=True,
noise_range_t=None,
noise_pct=0.67,
noise_std=1.0,
noise_seed=42,
initialize=True,
) -> None:
super().__init__(optimizer,
param_group_field='lr',
noise_range_t=noise_range_t,
noise_pct=noise_pct,
noise_std=noise_std,
noise_seed=noise_seed,
initialize=initialize)
self.t_initial = t_initial
self.lr_min_rate = lr_min_rate
self.warmup_t = warmup_t
self.warmup_lr_init = warmup_lr_init
self.t_in_epochs = t_in_epochs
if self.warmup_t:
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t
for v in self.base_values]
super().update_groups(self.warmup_lr_init)
else:
self.warmup_steps = [1 for _ in self.base_values]
def _get_lr(self, t):
if t < self.warmup_t:
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps]
else:
t = t - self.warmup_t
total_t = self.t_initial - self.warmup_t
lrs = [
v - ((v - v * self.lr_min_rate) * (t / total_t))
for v in self.base_values
]
return lrs
def get_epoch_values(self, epoch: int):
if self.t_in_epochs:
return self._get_lr(epoch)
else:
return None
def get_update_values(self, num_updates: int):
if not self.t_in_epochs:
return self._get_lr(num_updates)
else:
return None
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import datetime
import os
import random
import subprocess
import time
from contextlib import suppress
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from config import get_config
from dataset import build_loader
from logger import create_logger
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import build_optimizer
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ApexScaler, AverageMeter, ModelEma, accuracy
from utils import MyAverageMeter
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import (auto_resume_helper, get_grad_norm, load_checkpoint,
load_ema_checkpoint, load_pretrained, reduce_tensor,
save_checkpoint)
try:
from apex import amp
has_apex = True
except ImportError:
has_apex = False
# assert not has_apex, "The code is modified based on native amp"
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
def obsolete_torch_version(torch_version, version_threshold):
return torch_version == 'parrots' or torch_version <= version_threshold
def parse_option():
parser = argparse.ArgumentParser(
'InternVL training and evaluation script', add_help=False)
parser.add_argument('--cfg',
type=str,
required=True,
metavar='FILE',
help='path to config file')
parser.add_argument(
'--opts',
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+')
# easy config modification
parser.add_argument('--batch-size',
type=int,
help='batch size for single GPU')
parser.add_argument('--dataset',
type=str,
help='dataset name',
default=None)
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip',
action='store_true',
help='use zipped dataset instead of folder dataset')
parser.add_argument(
'--cache-mode',
type=str,
default='part',
choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece'
)
parser.add_argument(
'--pretrained',
help=
'pretrained weight from checkpoint, could be imagenet22k pretrained weight'
)
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps',
type=int,
default=1,
help='gradient accumulation steps')
parser.add_argument(
'--use-checkpoint',
action='store_true',
help='whether to use gradient checkpointing to save memory')
parser.add_argument(
'--amp-opt-level',
type=str,
default='O1',
choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument(
'--output',
default='work_dirs',
type=str,
metavar='PATH',
help=
'root of output folder, the full path is <output>/<model_name>/<tag> (default: output)'
)
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval',
action='store_true',
help='Perform evaluation only')
parser.add_argument('--throughput',
action='store_true',
help='Test throughput only')
parser.add_argument('--save-ckpt-num', default=1, type=int)
parser.add_argument(
'--use-zero',
action='store_true',
help='whether to use ZeroRedundancyOptimizer (ZeRO) to save memory')
# distributed training
parser.add_argument('--local-rank',
type=int,
required=True,
help='local rank for DistributedDataParallel')
parser.add_argument('--launcher',
choices=['pytorch', 'slurm'],
default='pytorch')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f'throughput averaged with 30 times')
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(
f'batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}'
)
return
def main(config):
# prepare data loaders
dataset_train, dataset_val, dataset_test, data_loader_train, \
data_loader_val, data_loader_test, mixup_fn = build_loader(config)
# build runner
logger.info(f'Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}')
model = build_model(config)
model.cuda()
logger.info(str(model))
# build optimizer
optimizer = build_optimizer(config, model)
if config.AMP_OPT_LEVEL != 'O0':
config.defrost()
if has_native_amp:
config.native_amp = True
use_amp = 'native'
elif has_apex:
config.apex_amp = True
use_amp = 'apex'
else:
use_amp = None
logger.warning(
'Neither APEX or native Torch AMP is available, using float32. '
'Install NVIDA apex or upgrade to PyTorch 1.6')
config.freeze()
# setup automatic mixed-precision (AMP) loss scaling and op casting
amp_autocast = suppress # do nothing
loss_scaler = None
if config.AMP_OPT_LEVEL != 'O0':
if use_amp == 'apex':
model, optimizer = amp.initialize(model,
optimizer,
opt_level=config.AMP_OPT_LEVEL)
loss_scaler = ApexScaler()
if config.LOCAL_RANK == 0:
logger.info(
'Using NVIDIA APEX AMP. Training in mixed precision.')
if use_amp == 'native':
amp_autocast = torch.cuda.amp.autocast
loss_scaler = NativeScaler()
if config.LOCAL_RANK == 0:
logger.info(
'Using native Torch AMP. Training in mixed precision.')
else:
if config.LOCAL_RANK == 0:
logger.info('AMP not enabled. Training in float32.')
# put model on gpus
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
# try:
# model.register_comm_hook(state=None, hook=fp16_compress_hook)
# logger.info('using fp16_compress_hook!')
# except:
# logger.info("cannot register fp16_compress_hook!")
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
logger.info(f'number of params: {n_parameters}')
if hasattr(model_without_ddp, 'flops'):
flops = model_without_ddp.flops()
logger.info(f'number of GFLOPs: {flops / 1e9}')
# build learning rate scheduler
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train)) \
if not config.EVAL_MODE else None
# build criterion
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(
smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
max_accuracy = 0.0
max_ema_accuracy = 0.0
# set auto resume
if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(
f'auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}'
)
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(
f'no checkpoint found in {config.OUTPUT}, ignoring auto resume'
)
# set resume and pretrain
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer,
lr_scheduler, loss_scaler, logger)
if data_loader_val is not None:
if config.DATA.DATASET == 'imagenet-real':
filenames = dataset_val.filenames()
filenames = [os.path.basename(item) for item in filenames]
from dataset.imagenet_real import RealLabelsImagenet
real_labels = RealLabelsImagenet(filenames, real_json='meta_data/real.json')
acc1, acc5, loss = validate_real(config, data_loader_val, model, real_labels, amp_autocast=amp_autocast)
logger.info(
f'ReaL Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
else:
acc1, acc5, loss = validate(config, data_loader_val, model, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
elif config.MODEL.PRETRAINED:
load_pretrained(config, model_without_ddp, logger)
if data_loader_val is not None:
acc1, acc5, loss = validate(config, data_loader_val, model, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
# evaluate EMA
model_ema = None
if config.TRAIN.EMA.ENABLE:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(model, decay=config.TRAIN.EMA.DECAY)
print('Using EMA with decay = %.8f' % config.TRAIN.EMA.DECAY)
if config.MODEL.RESUME:
load_ema_checkpoint(config, model_ema, logger)
if config.DATA.DATASET == 'imagenet-real':
# assert only one gpu
assert dist.get_world_size() == 1, 'imagenet-real should test with one gpu'
filenames = dataset_val.filenames()
filenames = [os.path.basename(item) for item in filenames]
from dataset.imagenet_real import RealLabelsImagenet
real_labels = RealLabelsImagenet(filenames, real_json='meta_data/real.json')
acc1, acc5, loss = validate_real(config, data_loader_val, model_ema.ema, real_labels,
amp_autocast=amp_autocast)
logger.info(
f'ReaL Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
else:
acc1, acc5, loss = validate(config, data_loader_val, model_ema.ema, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
if config.EVAL_MODE:
return
# train
logger.info('Start training')
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config,
model,
criterion,
data_loader_train,
optimizer,
epoch,
mixup_fn,
lr_scheduler,
amp_autocast,
loss_scaler,
model_ema=model_ema)
if (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)) and config.TRAIN.OPTIMIZER.USE_ZERO:
optimizer.consolidate_state_dict(to=0)
if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)):
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema)
if data_loader_val is not None and epoch % config.EVAL_FREQ == 0:
acc1, acc5, loss = validate(config, data_loader_val, model, epoch, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if dist.get_rank() == 0 and acc1 > max_accuracy:
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema,
best='best')
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if config.TRAIN.EMA.ENABLE:
acc1, acc5, loss = validate(config, data_loader_val,
model_ema.ema, epoch, amp_autocast=amp_autocast)
logger.info(
f'Accuracy of the ema network on the {len(dataset_val)} test images: {acc1:.1f}%'
)
if dist.get_rank() == 0 and acc1 > max_ema_accuracy:
save_checkpoint(config,
epoch,
model_without_ddp,
max_accuracy,
optimizer,
lr_scheduler,
loss_scaler,
logger,
model_ema=model_ema,
best='ema_best')
max_ema_accuracy = max(max_ema_accuracy, acc1)
logger.info(f'Max ema accuracy: {max_ema_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config,
model,
criterion,
data_loader,
optimizer,
epoch,
mixup_fn,
lr_scheduler,
amp_autocast=suppress,
loss_scaler=None,
model_ema=None):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
model_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = MyAverageMeter(300)
start = time.time()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (samples, targets) in enumerate(data_loader):
iter_begin_time = time.time()
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if not obsolete_torch_version(TORCH_VERSION,
(1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
outputs = model(samples)
else:
with amp_autocast():
outputs = model(samples)
if config.TRAIN.ACCUMULATION_STEPS > 1:
if not obsolete_torch_version(
TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
else:
with amp_autocast():
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
if config.AMP_OPT_LEVEL != 'O0':
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss,
optimizer,
clip_grad=config.TRAIN.CLIP_GRAD,
parameters=model.parameters(),
create_graph=is_second_order,
update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.step()
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
lr_scheduler.step_update(epoch * num_steps + idx)
else:
if not obsolete_torch_version(
TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
loss = criterion(outputs, targets)
else:
with amp_autocast():
loss = criterion(outputs, targets)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != 'O0':
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss,
optimizer,
clip_grad=config.TRAIN.CLIP_GRAD,
parameters=model.parameters(),
create_graph=is_second_order,
update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
if model_ema is not None:
model_ema.update(model)
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
if model_ema is not None:
model_ema.update(model)
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
if grad_norm is not None:
norm_meter.update(grad_norm.item())
batch_time.update(time.time() - end)
model_time.update(time.time() - iter_begin_time)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f}/{norm_meter.var:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(
f'EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}'
)
@torch.no_grad()
def validate_real(config, data_loader, model, real_labels, amp_autocast=suppress):
# https://github.com/baaivision/EVA/blob/master/EVA-01/eva/engine_for_finetuning.py#L195
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if not obsolete_torch_version(TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
output = model(images)
else:
with amp_autocast():
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
real_labels.add_result(output)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
# real labels mode replaces topk values at the end
top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5)
print('* ReaL Acc@1 {:.3f} Acc@5 {:.3f} loss {losses:.3f}'
.format(top1a, top5a, losses=loss_meter.avg))
return top1a, top5a, loss_meter.avg
@torch.no_grad()
def validate(config, data_loader, model, epoch=None, amp_autocast=suppress):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
amp_type = torch.float16 if config.AMP_TYPE == 'float16' else torch.bfloat16
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if not obsolete_torch_version(TORCH_VERSION, (1, 9)) and config.AMP_OPT_LEVEL != 'O0':
with amp_autocast(dtype=amp_type):
output = model(images)
else:
with amp_autocast():
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
if config.DATA.DATASET == 'imagenet_a':
from dataset.imagenet_a_r_indices import imagenet_a_mask
output = output[:, imagenet_a_mask]
elif config.DATA.DATASET == 'imagenet_r':
from dataset.imagenet_a_r_indices import imagenet_r_mask
output = output[:, imagenet_r_mask]
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
if epoch is not None:
logger.info(
f'[Epoch:{epoch}] * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}'
)
else:
logger.info(
f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
_, config = parse_option()
if config.AMP_OPT_LEVEL != 'O0':
assert has_native_amp, 'Please update pytorch(1.6+) to support amp!'
# init distributed env
if _.launcher == 'slurm':
print('\nDist init: SLURM')
rank = int(os.environ['SLURM_PROCID'])
gpu = rank % torch.cuda.device_count()
config.defrost()
config.LOCAL_RANK = gpu
config.freeze()
world_size = int(os.environ['SLURM_NTASKS'])
if 'MASTER_PORT' not in os.environ:
os.environ['MASTER_PORT'] = '29501'
node_list = os.environ['SLURM_NODELIST']
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
if 'MASTER_ADDR' not in os.environ:
os.environ['MASTER_ADDR'] = addr
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(gpu)
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
os.environ['WORLD_SIZE'] = str(world_size)
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
print(f'RANK and WORLD_SIZE in environ: {rank}/{world_size}')
else:
rank = -1
world_size = -1
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank)
torch.distributed.barrier()
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
print(config.AMP_OPT_LEVEL, _.amp_opt_level)
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT,
dist_rank=dist.get_rank(),
name=f'{config.MODEL.NAME}')
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, 'config.json')
with open(path, 'w') as f:
f.write(config.dump())
logger.info(f'Full config saved to {path}')
# print config
logger.info(config.dump())
main(config)
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import datetime
import logging
import os
import random
import time
import warnings
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from accelerate import Accelerator, GradScalerKwargs
from accelerate.logging import get_logger
from config import get_config
from dataset import build_loader2
from ddp_hooks import fp16_compress_hook
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import build_optimizer
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import AverageMeter, ModelEma, accuracy
from tqdm import tqdm
from utils import load_ema_checkpoint, load_pretrained
logger = get_logger(__name__)
warnings.filterwarnings('ignore')
def parse_option():
parser = argparse.ArgumentParser(
'InternVL training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar='FILE', help='path to config file')
parser.add_argument('--opts', help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+')
# easy config modification
parser.add_argument('--batch-size', type=int, help='batch size for single GPU')
parser.add_argument('--dataset', type=str, help='dataset name', default=None)
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece'
)
parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--output', default='work_dirs', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)'
)
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--save-ckpt-num', default=1, type=int)
parser.add_argument('--accumulation-steps', type=int, default=1, help='gradient accumulation steps')
parser.add_argument('--disable-grad-scalar', action='store_true', help='disable Grad Scalar')
parser.add_argument(
'--logger',
type=str,
default='tensorboard',
choices=['tensorboard', 'wandb'],
help=(
'Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)'
' for experiment tracking and logging of model metrics and model checkpoints'
),
)
args, unparsed = parser.parse_known_args()
config = get_config(args)
config.defrost()
config.TRAIN.OPTIMIZER.USE_ZERO = False
config.OUTPUT += '_deepspeed'
config.DATA.IMG_ON_MEMORY = False
config.freeze()
return args, config
def seed_everything(seed, rank):
seed = seed + rank
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
def save_config(config):
path = os.path.join(config.OUTPUT, 'config.json')
with open(path, 'w') as f:
f.write(config.dump())
logger.info(f'Full config saved to {path}')
def build_criterion(config):
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(
smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
return criterion
def scale_learning_rate(config, num_processes):
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * \
config.DATA.BATCH_SIZE * num_processes / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
logger.info('BASE_LR={}'.format(config.TRAIN.BASE_LR))
logger.info('WARMUP_LR={}'.format(config.TRAIN.WARMUP_LR))
logger.info('MIN_LR={}'.format(config.TRAIN.MIN_LR))
def setup_autoresume(config):
if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME:
last_checkpoint = os.path.join(config.OUTPUT, 'last')
resume_file = last_checkpoint if os.path.exists(last_checkpoint) else None
if resume_file:
if config.MODEL.RESUME:
logger.warning(f'auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}')
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
def load_model_checkpoint(config, model, accelerator):
if config.MODEL.RESUME:
try:
checkpoint = torch.load(config.MODEL.RESUME)['model']
checkpoint = {k.replace('module.', ''): v for k, v in checkpoint.items()}
model.load_state_dict(checkpoint)
except:
accelerator.load_state(config.MODEL.RESUME)
elif config.MODEL.PRETRAINED:
try:
load_pretrained(config, model, logger)
except:
accelerator.load_state(config.MODEL.PRETRAINED)
return model
def save_checkpoint(save_dir, accelerator, epoch, max_acc, config, lr_scheduler=None):
# let accelerator handle the model and optimizer state for ddp and deepspeed.
accelerator.save_state(save_dir)
if accelerator.is_main_process:
save_state = {
'lr_scheduler': lr_scheduler.state_dict(),
'max_acc': max_acc,
'epoch': epoch,
'config': config
}
torch.save(save_state, os.path.join(save_dir, 'additional_state.pth'))
def load_checkpoint_if_needed(accelerator, config, lr_scheduler=None):
setup_autoresume(config)
save_dir = config.MODEL.RESUME
if not save_dir:
return 0.0
accelerator.load_state(save_dir)
checkpoint = torch.load(os.path.join(save_dir, 'additional_state.pth'), map_location='cpu')
if lr_scheduler is not None:
logger.info('resuming lr_scheduler')
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.defrost()
config.TRAIN.START_EPOCH = checkpoint['epoch'] + 1
config.freeze()
max_acc = checkpoint.get('max_acc', 0.0)
logger.info(f"=> loaded successfully {config.MODEL.RESUME} (epoch {checkpoint['epoch']})")
return max_acc
def log_model_statistic(model_wo_ddp):
n_parameters = sum(p.numel() for p in model_wo_ddp.parameters()
if p.requires_grad)
logger.info(f'number of params: {n_parameters}')
if hasattr(model_wo_ddp, 'flops'):
flops = model_wo_ddp.flops()
logger.info(f'number of GFLOPs: {flops / 1e9}')
def train_epoch(*, model, optimizer, data_loader, scheduler, criterion, mixup_fn,
accelerator: Accelerator, epoch, config):
model.train()
num_steps = len(data_loader)
batch_time = AverageMeter()
model_time = AverageMeter()
loss_meter = AverageMeter()
end = time.time()
gradient_accumulation_steps = config.TRAIN.ACCUMULATION_STEPS
for step, (samples, targets) in enumerate(data_loader):
iter_begin_time = time.time()
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with accelerator.accumulate(model):
outputs = model(samples)
loss = criterion(outputs, targets)
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
accelerator.wait_for_everyone()
if (step + 1) % gradient_accumulation_steps == 0:
if scheduler is not None:
scheduler.step_update((epoch * num_steps + step) // gradient_accumulation_steps)
batch_time.update(time.time() - end)
model_time.update(time.time() - iter_begin_time)
loss_meter.update(loss.item())
end = time.time()
if accelerator.is_main_process and step % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - step)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{step}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.10f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t'
f'loss {loss_meter.val:.8f} ({loss_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
@torch.no_grad()
def eval_epoch(*, config, data_loader, model, accelerator: Accelerator):
model.eval()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
for idx, (images, target) in enumerate(tqdm(data_loader, disable=accelerator.is_main_process)):
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = accelerator.gather(acc1).mean(0)
acc5 = accelerator.gather(acc5).mean(0)
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
if (idx + 1) % config.PRINT_FREQ == 0 or idx + 1 == len(data_loader):
logger.info(f'Test: [{idx+1}/{len(data_loader)}]\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
)
return acc1_meter.avg
def eval(config, accelerator: Accelerator):
_, _, _, _, validate_dataloader, _, _ = build_loader2(config)
model = build_model(config)
model, validate_dataloader = accelerator.prepare(model, validate_dataloader)
model = load_model_checkpoint(config, model, accelerator)
log_model_statistic(accelerator.unwrap_model(model))
eval_epoch(config=config, data_loader=validate_dataloader, model=model, accelerator=accelerator)
def train(config, accelerator: Accelerator):
_, _, _, training_dataloader, validate_dataloader, _, mixup_fn = build_loader2(config)
model = build_model(config)
optimizer = build_optimizer(config, model)
criterion = build_criterion(config)
model, optimizer, training_dataloader, validate_dataloader = accelerator.prepare(
model, optimizer, training_dataloader, validate_dataloader)
effective_update_steps_per_epoch = len(training_dataloader) // config.TRAIN.ACCUMULATION_STEPS
lr_scheduler = build_scheduler(config, optimizer, effective_update_steps_per_epoch)
try:
model.register_comm_hook(state=None, hook=fp16_compress_hook)
logger.info('using fp16_compress_hook!')
except:
logger.info('cannot register fp16_compress_hook!')
max_acc = load_checkpoint_if_needed(accelerator, config, lr_scheduler)
logger.info(f'Created model:{config.MODEL.TYPE}/{config.MODEL.NAME}')
logger.info(str(model))
logger.info('Effective Optimizer Steps: {}'.format(effective_update_steps_per_epoch))
logger.info('Start training')
logger.info('Max accuracy: {}'.format(max_acc))
log_model_statistic(accelerator.unwrap_model(model))
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
train_epoch(model=model, optimizer=optimizer, data_loader=training_dataloader,
scheduler=lr_scheduler, criterion=criterion, mixup_fn=mixup_fn,
accelerator=accelerator, epoch=epoch, config=config)
acc = eval_epoch(config=config, data_loader=validate_dataloader, model=model,
accelerator=accelerator)
accelerator.wait_for_everyone()
if acc > max_acc:
max_acc = acc
save_checkpoint(os.path.join(config.OUTPUT, 'best'), accelerator, epoch, max_acc, config, lr_scheduler)
logger.info(f'Max Acc@1 {max_acc:.3f}')
save_checkpoint(os.path.join(config.OUTPUT, 'last'), accelerator, epoch, max_acc, config, lr_scheduler)
def main():
args, config = parse_option()
os.makedirs(config.OUTPUT, exist_ok=True)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
filename=os.path.join(config.OUTPUT, 'run.log'),
level=logging.INFO,
)
loggers = ['tensorboard']
accelerator = Accelerator(
log_with=loggers,
project_dir=config.OUTPUT,
gradient_accumulation_steps=config.TRAIN.ACCUMULATION_STEPS,
# When use deepspeed, you could not comment this out
# even if you set loss scale to 1.0 in deepspeed config.
kwargs_handlers=[GradScalerKwargs(enabled=not args.disable_grad_scalar)],
)
logger.info(accelerator.state, main_process_only=False)
scale_learning_rate(config, accelerator.num_processes)
seed_everything(config.SEED, accelerator.process_index)
save_config(config)
logger.info(config.dump())
if config.EVAL_MODE:
eval(config, accelerator)
else:
train(config, accelerator)
if __name__ == '__main__':
main()
# --------------------------------------------------------
# InternVL
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import argparse
import datetime
import os
import random
import subprocess
import time
import deepspeed
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from config import get_config
from dataset import build_loader
from ddp_hooks import fp16_compress_hook
from ema_deepspeed import EMADeepspeed
from logger import create_logger
from lr_scheduler import build_scheduler
from models import build_model
from optimizer import set_weight_decay_and_lr
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import AverageMeter, accuracy
from utils import MyAverageMeter, load_pretrained, reduce_tensor
def parse_option():
parser = argparse.ArgumentParser(
'InternVL training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar='FILE', help='path to config file')
parser.add_argument('--opts', help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+')
# easy config modification
parser.add_argument('--batch-size', type=int, help='batch size for single GPU')
parser.add_argument('--dataset', type=str, help='dataset name', default=None)
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece'
)
parser.add_argument('--pretrained',
help='pretrained weight from checkpoint, could be imagenet22k pretrained weight')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--output', default='work_dirs', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)'
)
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--save-ckpt-num', default=1, type=int)
parser.add_argument('--accumulation-steps', type=int, default=1, help='gradient accumulation steps')
# distributed training
parser.add_argument('--local-rank', type=int, required=True, help='local rank for DistributedDataParallel')
# deepspeed config
parser.add_argument('--disable-grad-scalar', action='store_true', help='disable Grad Scalar')
parser.add_argument('--offload-optimizer', type=str, default='none', choices=['cpu', 'none'],
help='enable optimizer offloading')
parser.add_argument('--offload-param', type=str, default='none', choices=['cpu', 'none'],
help='enable model offloading')
# To use Zero3, Please use main_accelerate.py instead.
# For this script, we are facing a similar issue as https://github.com/microsoft/DeepSpeed/issues/3068
parser.add_argument('--zero-stage', type=int, default=1, choices=[1, 2], help='deep speed zero stage')
args, unparsed = parser.parse_known_args()
config = get_config(args)
return args, config
def seed_everything(seed, rank):
seed = seed + rank
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
def save_config(config):
path = os.path.join(config.OUTPUT, 'config.json')
with open(path, 'w') as f:
f.write(config.dump())
logger.info(f'Full config saved to {path}')
def build_criterion(config):
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(
smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
return criterion
def scale_learning_rate(config, num_processes):
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * num_processes / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * num_processes / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
logger.info('BASE_LR={}'.format(config.TRAIN.BASE_LR))
logger.info('WARMUP_LR={}'.format(config.TRAIN.WARMUP_LR))
logger.info('MIN_LR={}'.format(config.TRAIN.MIN_LR))
def log_model_statistic(model_wo_ddp):
n_parameters = sum(p.numel() for p in model_wo_ddp.parameters()
if p.requires_grad)
logger.info(f'number of params: {n_parameters / 1e6} M')
if hasattr(model_wo_ddp, 'flops'):
flops = model_wo_ddp.flops()
logger.info(f'number of GFLOPs: {flops / 1e9}')
def get_parameter_groups(model, config):
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
parameters = set_weight_decay_and_lr(
model,
config.TRAIN.WEIGHT_DECAY,
config.TRAIN.BASE_LR,
skip,
skip_keywords,
lr_layer_decay=config.TRAIN.LR_LAYER_DECAY,
lr_layer_decay_ratio=config.TRAIN.LR_LAYER_DECAY_RATIO,
freeze_backbone=config.TRAIN.OPTIMIZER.FREEZE_BACKBONE,
dcn_lr_mul=config.TRAIN.OPTIMIZER.DCN_LR_MUL,
)
return parameters
def get_optimizer_state_str(optimizer):
states = []
for param_group in optimizer.param_groups:
states.append(f'name={param_group["name"]} lr={param_group["lr"]} weight_decay={param_group["weight_decay"]}')
return '\n'.join(states)
def build_ds_config(config, args):
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
if opt_lower == 'adamw':
optimizer = {
'type': 'AdamW',
'params': {
'lr': config.TRAIN.BASE_LR,
'eps': config.TRAIN.OPTIMIZER.EPS,
'betas': config.TRAIN.OPTIMIZER.BETAS,
'weight_decay': config.TRAIN.WEIGHT_DECAY
}
}
else:
return NotImplemented
ds_config = {
'train_micro_batch_size_per_gpu': config.DATA.BATCH_SIZE,
'optimizer': optimizer,
'bf16': {
'enabled': True,
},
'zero_optimization': {
'stage': 1,
'allgather_partitions': True,
'allgather_bucket_size': 1e9,
'overlap_comm': True,
'reduce_scatter': True,
'reduce_bucket_size': 1e9,
'contiguous_gradients': True
},
'steps_per_print': 1e10,
'gradient_accumulation_steps': config.TRAIN.ACCUMULATION_STEPS,
'gradient_clipping': config.TRAIN.CLIP_GRAD,
}
return ds_config
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f'throughput averaged with 30 times')
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(
f'batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}'
)
return
def train_epoch(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, model_ema=None):
model.train()
num_steps = len(data_loader)
batch_time = AverageMeter()
model_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = MyAverageMeter(300)
start = time.time()
end = time.time()
for idx, (samples, targets) in enumerate(data_loader):
iter_begin_time = time.time()
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
outputs = model(samples)
loss = criterion(outputs, targets)
model.backward(loss)
model.step()
if model_ema is not None:
model_ema(model)
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(optimizer._global_grad_norm)
batch_time.update(time.time() - end)
model_time.update(time.time() - iter_begin_time)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'model_time {model_time.val:.4f} ({model_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f}/{norm_meter.var:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(f'EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}')
@torch.no_grad()
def eval_epoch(config, data_loader, model, epoch=None):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
output = model(images)
# convert 22k to 1k to evaluate
if output.size(-1) == 21841:
convert_file = './meta_data/map22kto1k.txt'
with open(convert_file, 'r') as f:
convert_list = [int(line) for line in f.readlines()]
output = output[:, convert_list]
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
if epoch is not None:
logger.info(f'[Epoch:{epoch}] * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
else:
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
def train(config, ds_config):
# -------------- build ---------------- #
_, dataset_val, _, data_loader_train, data_loader_val, _, mixup_fn = build_loader(config)
model = build_model(config)
model.cuda()
if config.MODEL.PRETRAINED:
load_pretrained(config, model, logger)
logger.info(ds_config)
model, optimizer, _, _ = deepspeed.initialize(
config=ds_config,
model=model,
model_parameters=get_parameter_groups(model, config),
dist_init_required=False,
)
try:
model.register_comm_hook(state=None, hook=fp16_compress_hook)
logger.info('using fp16_compress_hook!')
except:
logger.info('cannot register fp16_compress_hook!')
model_without_ddp = model.module
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
criterion = build_criterion(config)
model_ema = None
if config.TRAIN.EMA.ENABLE:
model_ema = EMADeepspeed(model, config.TRAIN.EMA.DECAY)
# -------------- resume ---------------- #
max_accuracy = 0.0
max_accuracy_ema = 0.0
client_state = {}
if config.MODEL.RESUME == '' and config.TRAIN.AUTO_RESUME:
if os.path.exists(os.path.join(config.OUTPUT, 'latest')):
config.defrost()
config.MODEL.RESUME = config.OUTPUT
config.freeze()
tag = None
elif config.MODEL.RESUME:
config.MODEL.RESUME = os.path.dirname(config.MODEL.RESUME)
tag = os.path.basename(config.MODEL.RESUME)
if config.MODEL.RESUME:
logger.info('loading checkpoint from {}'.format(config.MODEL.RESUME))
_, client_state = model.load_checkpoint(load_dir=config.MODEL.RESUME, tag=tag)
logger.info(f'client_state={client_state.keys()}')
lr_scheduler.load_state_dict(client_state['custom_lr_scheduler'])
max_accuracy = client_state['max_accuracy']
if model_ema is not None:
max_accuracy_ema = client_state.get('max_accuracy_ema', 0.0)
model_ema.load_state_dict((client_state['model_ema']))
# -------------- training ---------------- #
logger.info(f'Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}')
logger.info(str(model))
logger.info(get_optimizer_state_str(optimizer))
logger.info('Start training')
logger.info('max_accuracy: {}'.format(max_accuracy))
log_model_statistic(model_without_ddp)
start_time = time.time()
start_epoch = client_state['epoch'] + 1 if 'epoch' in client_state else config.TRAIN.START_EPOCH
for epoch in range(start_epoch, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler,
model_ema=model_ema)
if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.EPOCHS - 1:
model.save_checkpoint(
save_dir=config.OUTPUT,
tag=f'epoch{epoch}',
client_state={
'custom_lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config,
'max_accuracy_ema': max_accuracy_ema if model_ema is not None else 0.0,
'model_ema': model_ema.state_dict() if model_ema is not None else None,
}
)
if epoch % config.EVAL_FREQ == 0:
acc1, _, _ = eval_epoch(config, data_loader_val, model, epoch)
logger.info(f'Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%')
if acc1 > max_accuracy:
model.save_checkpoint(
save_dir=config.OUTPUT,
tag='best',
client_state={
'custom_lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'config': config,
'max_accuracy_ema': max_accuracy_ema if model_ema is not None else 0.0,
'model_ema': model_ema.state_dict() if model_ema is not None else None,
}
)
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if model_ema is not None:
with model_ema.activate(model):
acc1_ema, _, _ = eval_epoch(config, data_loader_val, model, epoch)
logger.info(f'[EMA] Accuracy of the network on the {len(dataset_val)} test images: {acc1_ema:.1f}%')
max_accuracy_ema = max(max_accuracy_ema, acc1_ema)
logger.info(f'[EMA] Max accuracy: {max_accuracy_ema:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def eval(config):
_, _, _, _, data_loader_val, _, _ = build_loader(config)
model = build_model(config)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False)
model_wo_ddp = model.module
if config.MODEL.RESUME:
try:
checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu')
msg = model_wo_ddp.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
except:
try:
from deepspeed.utils.zero_to_fp32 import \
get_fp32_state_dict_from_zero_checkpoint
ckpt_dir = os.path.dirname(config.MODEL.RESUME)
tag = os.path.basename(config.MODEL.RESUME)
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir=ckpt_dir, tag=tag)
model_wo_ddp.load_state_dict(state_dict)
except:
checkpoint = torch.load(os.path.join(config.MODEL.RESUME, 'mp_rank_00_model_states.pt'),
map_location='cpu')
model_wo_ddp.load_state_dict(checkpoint['module'])
elif config.MODEL.PRETRAINED:
load_pretrained(config, model_wo_ddp, logger)
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
eval_epoch(config, data_loader_val, model)
if __name__ == '__main__':
args, config = parse_option()
# init distributed env
if 'SLURM_PROCID' in os.environ:
print('\nDist init: SLURM')
rank = int(os.environ['SLURM_PROCID'])
gpu = rank % torch.cuda.device_count()
config.defrost()
config.LOCAL_RANK = gpu
config.freeze()
world_size = int(os.environ['SLURM_NTASKS'])
if 'MASTER_PORT' not in os.environ:
os.environ['MASTER_PORT'] = '29501'
node_list = os.environ['SLURM_NODELIST']
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
if 'MASTER_ADDR' not in os.environ:
os.environ['MASTER_ADDR'] = addr
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(gpu)
os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count())
os.environ['WORLD_SIZE'] = str(world_size)
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
print(f'RANK and WORLD_SIZE in environ: {rank}/{world_size}')
else:
rank = -1
world_size = -1
torch.cuda.set_device(config.LOCAL_RANK)
torch.distributed.init_process_group(backend='nccl',
init_method='env://',
world_size=world_size,
rank=rank)
torch.distributed.barrier()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT,
dist_rank=dist.get_rank(),
name=f'{config.MODEL.NAME}')
logger.info(config.dump())
if dist.get_rank() == 0:
save_config(config)
scale_learning_rate(config, dist.get_world_size())
seed_everything(config.SEED, dist.get_rank())
if config.EVAL_MODE:
eval(config)
else:
train(config, build_ds_config(config, args))
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"n01440764": 0,
"n01443537": 1,
"n01484850": 2,
"n01491361": 3,
"n01494475": 4,
"n01496331": 5,
"n01498041": 6,
"n01514668": 7,
"n01514859": 8,
"n01518878": 9,
"n01530575": 10,
"n01531178": 11,
"n01532829": 12,
"n01534433": 13,
"n01537544": 14,
"n01558993": 15,
"n01560419": 16,
"n01580077": 17,
"n01582220": 18,
"n01592084": 19,
"n01601694": 20,
"n01608432": 21,
"n01614925": 22,
"n01616318": 23,
"n01622779": 24,
"n01629819": 25,
"n01630670": 26,
"n01631663": 27,
"n01632458": 28,
"n01632777": 29,
"n01641577": 30,
"n01644373": 31,
"n01644900": 32,
"n01664065": 33,
"n01665541": 34,
"n01667114": 35,
"n01667778": 36,
"n01669191": 37,
"n01675722": 38,
"n01677366": 39,
"n01682714": 40,
"n01685808": 41,
"n01687978": 42,
"n01688243": 43,
"n01689811": 44,
"n01692333": 45,
"n01693334": 46,
"n01694178": 47,
"n01695060": 48,
"n01697457": 49,
"n01698640": 50,
"n01704323": 51,
"n01728572": 52,
"n01728920": 53,
"n01729322": 54,
"n01729977": 55,
"n01734418": 56,
"n01735189": 57,
"n01737021": 58,
"n01739381": 59,
"n01740131": 60,
"n01742172": 61,
"n01744401": 62,
"n01748264": 63,
"n01749939": 64,
"n01751748": 65,
"n01753488": 66,
"n01755581": 67,
"n01756291": 68,
"n01768244": 69,
"n01770081": 70,
"n01770393": 71,
"n01773157": 72,
"n01773549": 73,
"n01773797": 74,
"n01774384": 75,
"n01774750": 76,
"n01775062": 77,
"n01776313": 78,
"n01784675": 79,
"n01795545": 80,
"n01796340": 81,
"n01797886": 82,
"n01798484": 83,
"n01806143": 84,
"n01806567": 85,
"n01807496": 86,
"n01817953": 87,
"n01818515": 88,
"n01819313": 89,
"n01820546": 90,
"n01824575": 91,
"n01828970": 92,
"n01829413": 93,
"n01833805": 94,
"n01843065": 95,
"n01843383": 96,
"n01847000": 97,
"n01855032": 98,
"n01855672": 99,
"n01860187": 100,
"n01871265": 101,
"n01872401": 102,
"n01873310": 103,
"n01877812": 104,
"n01882714": 105,
"n01883070": 106,
"n01910747": 107,
"n01914609": 108,
"n01917289": 109,
"n01924916": 110,
"n01930112": 111,
"n01943899": 112,
"n01944390": 113,
"n01945685": 114,
"n01950731": 115,
"n01955084": 116,
"n01968897": 117,
"n01978287": 118,
"n01978455": 119,
"n01980166": 120,
"n01981276": 121,
"n01983481": 122,
"n01984695": 123,
"n01985128": 124,
"n01986214": 125,
"n01990800": 126,
"n02002556": 127,
"n02002724": 128,
"n02006656": 129,
"n02007558": 130,
"n02009229": 131,
"n02009912": 132,
"n02011460": 133,
"n02012849": 134,
"n02013706": 135,
"n02017213": 136,
"n02018207": 137,
"n02018795": 138,
"n02025239": 139,
"n02027492": 140,
"n02028035": 141,
"n02033041": 142,
"n02037110": 143,
"n02051845": 144,
"n02056570": 145,
"n02058221": 146,
"n02066245": 147,
"n02071294": 148,
"n02074367": 149,
"n02077923": 150,
"n02085620": 151,
"n02085782": 152,
"n02085936": 153,
"n02086079": 154,
"n02086240": 155,
"n02086646": 156,
"n02086910": 157,
"n02087046": 158,
"n02087394": 159,
"n02088094": 160,
"n02088238": 161,
"n02088364": 162,
"n02088466": 163,
"n02088632": 164,
"n02089078": 165,
"n02089867": 166,
"n02089973": 167,
"n02090379": 168,
"n02090622": 169,
"n02090721": 170,
"n02091032": 171,
"n02091134": 172,
"n02091244": 173,
"n02091467": 174,
"n02091635": 175,
"n02091831": 176,
"n02092002": 177,
"n02092339": 178,
"n02093256": 179,
"n02093428": 180,
"n02093647": 181,
"n02093754": 182,
"n02093859": 183,
"n02093991": 184,
"n02094114": 185,
"n02094258": 186,
"n02094433": 187,
"n02095314": 188,
"n02095570": 189,
"n02095889": 190,
"n02096051": 191,
"n02096177": 192,
"n02096294": 193,
"n02096437": 194,
"n02096585": 195,
"n02097047": 196,
"n02097130": 197,
"n02097209": 198,
"n02097298": 199,
"n02097474": 200,
"n02097658": 201,
"n02098105": 202,
"n02098286": 203,
"n02098413": 204,
"n02099267": 205,
"n02099429": 206,
"n02099601": 207,
"n02099712": 208,
"n02099849": 209,
"n02100236": 210,
"n02100583": 211,
"n02100735": 212,
"n02100877": 213,
"n02101006": 214,
"n02101388": 215,
"n02101556": 216,
"n02102040": 217,
"n02102177": 218,
"n02102318": 219,
"n02102480": 220,
"n02102973": 221,
"n02104029": 222,
"n02104365": 223,
"n02105056": 224,
"n02105162": 225,
"n02105251": 226,
"n02105412": 227,
"n02105505": 228,
"n02105641": 229,
"n02105855": 230,
"n02106030": 231,
"n02106166": 232,
"n02106382": 233,
"n02106550": 234,
"n02106662": 235,
"n02107142": 236,
"n02107312": 237,
"n02107574": 238,
"n02107683": 239,
"n02107908": 240,
"n02108000": 241,
"n02108089": 242,
"n02108422": 243,
"n02108551": 244,
"n02108915": 245,
"n02109047": 246,
"n02109525": 247,
"n02109961": 248,
"n02110063": 249,
"n02110185": 250,
"n02110341": 251,
"n02110627": 252,
"n02110806": 253,
"n02110958": 254,
"n02111129": 255,
"n02111277": 256,
"n02111500": 257,
"n02111889": 258,
"n02112018": 259,
"n02112137": 260,
"n02112350": 261,
"n02112706": 262,
"n02113023": 263,
"n02113186": 264,
"n02113624": 265,
"n02113712": 266,
"n02113799": 267,
"n02113978": 268,
"n02114367": 269,
"n02114548": 270,
"n02114712": 271,
"n02114855": 272,
"n02115641": 273,
"n02115913": 274,
"n02116738": 275,
"n02117135": 276,
"n02119022": 277,
"n02119789": 278,
"n02120079": 279,
"n02120505": 280,
"n02123045": 281,
"n02123159": 282,
"n02123394": 283,
"n02123597": 284,
"n02124075": 285,
"n02125311": 286,
"n02127052": 287,
"n02128385": 288,
"n02128757": 289,
"n02128925": 290,
"n02129165": 291,
"n02129604": 292,
"n02130308": 293,
"n02132136": 294,
"n02133161": 295,
"n02134084": 296,
"n02134418": 297,
"n02137549": 298,
"n02138441": 299,
"n02165105": 300,
"n02165456": 301,
"n02167151": 302,
"n02168699": 303,
"n02169497": 304,
"n02172182": 305,
"n02174001": 306,
"n02177972": 307,
"n02190166": 308,
"n02206856": 309,
"n02219486": 310,
"n02226429": 311,
"n02229544": 312,
"n02231487": 313,
"n02233338": 314,
"n02236044": 315,
"n02256656": 316,
"n02259212": 317,
"n02264363": 318,
"n02268443": 319,
"n02268853": 320,
"n02276258": 321,
"n02277742": 322,
"n02279972": 323,
"n02280649": 324,
"n02281406": 325,
"n02281787": 326,
"n02317335": 327,
"n02319095": 328,
"n02321529": 329,
"n02325366": 330,
"n02326432": 331,
"n02328150": 332,
"n02342885": 333,
"n02346627": 334,
"n02356798": 335,
"n02361337": 336,
"n02363005": 337,
"n02364673": 338,
"n02389026": 339,
"n02391049": 340,
"n02395406": 341,
"n02396427": 342,
"n02397096": 343,
"n02398521": 344,
"n02403003": 345,
"n02408429": 346,
"n02410509": 347,
"n02412080": 348,
"n02415577": 349,
"n02417914": 350,
"n02422106": 351,
"n02422699": 352,
"n02423022": 353,
"n02437312": 354,
"n02437616": 355,
"n02441942": 356,
"n02442845": 357,
"n02443114": 358,
"n02443484": 359,
"n02444819": 360,
"n02445715": 361,
"n02447366": 362,
"n02454379": 363,
"n02457408": 364,
"n02480495": 365,
"n02480855": 366,
"n02481823": 367,
"n02483362": 368,
"n02483708": 369,
"n02484975": 370,
"n02486261": 371,
"n02486410": 372,
"n02487347": 373,
"n02488291": 374,
"n02488702": 375,
"n02489166": 376,
"n02490219": 377,
"n02492035": 378,
"n02492660": 379,
"n02493509": 380,
"n02493793": 381,
"n02494079": 382,
"n02497673": 383,
"n02500267": 384,
"n02504013": 385,
"n02504458": 386,
"n02509815": 387,
"n02510455": 388,
"n02514041": 389,
"n02526121": 390,
"n02536864": 391,
"n02606052": 392,
"n02607072": 393,
"n02640242": 394,
"n02641379": 395,
"n02643566": 396,
"n02655020": 397,
"n02666196": 398,
"n02667093": 399,
"n02669723": 400,
"n02672831": 401,
"n02676566": 402,
"n02687172": 403,
"n02690373": 404,
"n02692877": 405,
"n02699494": 406,
"n02701002": 407,
"n02704792": 408,
"n02708093": 409,
"n02727426": 410,
"n02730930": 411,
"n02747177": 412,
"n02749479": 413,
"n02769748": 414,
"n02776631": 415,
"n02777292": 416,
"n02782093": 417,
"n02783161": 418,
"n02786058": 419,
"n02787622": 420,
"n02788148": 421,
"n02790996": 422,
"n02791124": 423,
"n02791270": 424,
"n02793495": 425,
"n02794156": 426,
"n02795169": 427,
"n02797295": 428,
"n02799071": 429,
"n02802426": 430,
"n02804414": 431,
"n02804610": 432,
"n02807133": 433,
"n02808304": 434,
"n02808440": 435,
"n02814533": 436,
"n02814860": 437,
"n02815834": 438,
"n02817516": 439,
"n02823428": 440,
"n02823750": 441,
"n02825657": 442,
"n02834397": 443,
"n02835271": 444,
"n02837789": 445,
"n02840245": 446,
"n02841315": 447,
"n02843684": 448,
"n02859443": 449,
"n02860847": 450,
"n02865351": 451,
"n02869837": 452,
"n02870880": 453,
"n02871525": 454,
"n02877765": 455,
"n02879718": 456,
"n02883205": 457,
"n02892201": 458,
"n02892767": 459,
"n02894605": 460,
"n02895154": 461,
"n02906734": 462,
"n02909870": 463,
"n02910353": 464,
"n02916936": 465,
"n02917067": 466,
"n02927161": 467,
"n02930766": 468,
"n02939185": 469,
"n02948072": 470,
"n02950826": 471,
"n02951358": 472,
"n02951585": 473,
"n02963159": 474,
"n02965783": 475,
"n02966193": 476,
"n02966687": 477,
"n02971356": 478,
"n02974003": 479,
"n02977058": 480,
"n02978881": 481,
"n02979186": 482,
"n02980441": 483,
"n02981792": 484,
"n02988304": 485,
"n02992211": 486,
"n02992529": 487,
"n02999410": 488,
"n03000134": 489,
"n03000247": 490,
"n03000684": 491,
"n03014705": 492,
"n03016953": 493,
"n03017168": 494,
"n03018349": 495,
"n03026506": 496,
"n03028079": 497,
"n03032252": 498,
"n03041632": 499,
"n03042490": 500,
"n03045698": 501,
"n03047690": 502,
"n03062245": 503,
"n03063599": 504,
"n03063689": 505,
"n03065424": 506,
"n03075370": 507,
"n03085013": 508,
"n03089624": 509,
"n03095699": 510,
"n03100240": 511,
"n03109150": 512,
"n03110669": 513,
"n03124043": 514,
"n03124170": 515,
"n03125729": 516,
"n03126707": 517,
"n03127747": 518,
"n03127925": 519,
"n03131574": 520,
"n03133878": 521,
"n03134739": 522,
"n03141823": 523,
"n03146219": 524,
"n03160309": 525,
"n03179701": 526,
"n03180011": 527,
"n03187595": 528,
"n03188531": 529,
"n03196217": 530,
"n03197337": 531,
"n03201208": 532,
"n03207743": 533,
"n03207941": 534,
"n03208938": 535,
"n03216828": 536,
"n03218198": 537,
"n03220513": 538,
"n03223299": 539,
"n03240683": 540,
"n03249569": 541,
"n03250847": 542,
"n03255030": 543,
"n03259280": 544,
"n03271574": 545,
"n03272010": 546,
"n03272562": 547,
"n03290653": 548,
"n03291819": 549,
"n03297495": 550,
"n03314780": 551,
"n03325584": 552,
"n03337140": 553,
"n03344393": 554,
"n03345487": 555,
"n03347037": 556,
"n03355925": 557,
"n03372029": 558,
"n03376595": 559,
"n03379051": 560,
"n03384352": 561,
"n03388043": 562,
"n03388183": 563,
"n03388549": 564,
"n03393912": 565,
"n03394916": 566,
"n03400231": 567,
"n03404251": 568,
"n03417042": 569,
"n03424325": 570,
"n03425413": 571,
"n03443371": 572,
"n03444034": 573,
"n03445777": 574,
"n03445924": 575,
"n03447447": 576,
"n03447721": 577,
"n03450230": 578,
"n03452741": 579,
"n03457902": 580,
"n03459775": 581,
"n03461385": 582,
"n03467068": 583,
"n03476684": 584,
"n03476991": 585,
"n03478589": 586,
"n03481172": 587,
"n03482405": 588,
"n03483316": 589,
"n03485407": 590,
"n03485794": 591,
"n03492542": 592,
"n03494278": 593,
"n03495258": 594,
"n03496892": 595,
"n03498962": 596,
"n03527444": 597,
"n03529860": 598,
"n03530642": 599,
"n03532672": 600,
"n03534580": 601,
"n03535780": 602,
"n03538406": 603,
"n03544143": 604,
"n03584254": 605,
"n03584829": 606,
"n03590841": 607,
"n03594734": 608,
"n03594945": 609,
"n03595614": 610,
"n03598930": 611,
"n03599486": 612,
"n03602883": 613,
"n03617480": 614,
"n03623198": 615,
"n03627232": 616,
"n03630383": 617,
"n03633091": 618,
"n03637318": 619,
"n03642806": 620,
"n03649909": 621,
"n03657121": 622,
"n03658185": 623,
"n03661043": 624,
"n03662601": 625,
"n03666591": 626,
"n03670208": 627,
"n03673027": 628,
"n03676483": 629,
"n03680355": 630,
"n03690938": 631,
"n03691459": 632,
"n03692522": 633,
"n03697007": 634,
"n03706229": 635,
"n03709823": 636,
"n03710193": 637,
"n03710637": 638,
"n03710721": 639,
"n03717622": 640,
"n03720891": 641,
"n03721384": 642,
"n03724870": 643,
"n03729826": 644,
"n03733131": 645,
"n03733281": 646,
"n03733805": 647,
"n03742115": 648,
"n03743016": 649,
"n03759954": 650,
"n03761084": 651,
"n03763968": 652,
"n03764736": 653,
"n03769881": 654,
"n03770439": 655,
"n03770679": 656,
"n03773504": 657,
"n03775071": 658,
"n03775546": 659,
"n03776460": 660,
"n03777568": 661,
"n03777754": 662,
"n03781244": 663,
"n03782006": 664,
"n03785016": 665,
"n03786901": 666,
"n03787032": 667,
"n03788195": 668,
"n03788365": 669,
"n03791053": 670,
"n03792782": 671,
"n03792972": 672,
"n03793489": 673,
"n03794056": 674,
"n03796401": 675,
"n03803284": 676,
"n03804744": 677,
"n03814639": 678,
"n03814906": 679,
"n03825788": 680,
"n03832673": 681,
"n03837869": 682,
"n03838899": 683,
"n03840681": 684,
"n03841143": 685,
"n03843555": 686,
"n03854065": 687,
"n03857828": 688,
"n03866082": 689,
"n03868242": 690,
"n03868863": 691,
"n03871628": 692,
"n03873416": 693,
"n03874293": 694,
"n03874599": 695,
"n03876231": 696,
"n03877472": 697,
"n03877845": 698,
"n03884397": 699,
"n03887697": 700,
"n03888257": 701,
"n03888605": 702,
"n03891251": 703,
"n03891332": 704,
"n03895866": 705,
"n03899768": 706,
"n03902125": 707,
"n03903868": 708,
"n03908618": 709,
"n03908714": 710,
"n03916031": 711,
"n03920288": 712,
"n03924679": 713,
"n03929660": 714,
"n03929855": 715,
"n03930313": 716,
"n03930630": 717,
"n03933933": 718,
"n03935335": 719,
"n03937543": 720,
"n03938244": 721,
"n03942813": 722,
"n03944341": 723,
"n03947888": 724,
"n03950228": 725,
"n03954731": 726,
"n03956157": 727,
"n03958227": 728,
"n03961711": 729,
"n03967562": 730,
"n03970156": 731,
"n03976467": 732,
"n03976657": 733,
"n03977966": 734,
"n03980874": 735,
"n03982430": 736,
"n03983396": 737,
"n03991062": 738,
"n03992509": 739,
"n03995372": 740,
"n03998194": 741,
"n04004767": 742,
"n04005630": 743,
"n04008634": 744,
"n04009552": 745,
"n04019541": 746,
"n04023962": 747,
"n04026417": 748,
"n04033901": 749,
"n04033995": 750,
"n04037443": 751,
"n04039381": 752,
"n04040759": 753,
"n04041544": 754,
"n04044716": 755,
"n04049303": 756,
"n04065272": 757,
"n04067472": 758,
"n04069434": 759,
"n04070727": 760,
"n04074963": 761,
"n04081281": 762,
"n04086273": 763,
"n04090263": 764,
"n04099969": 765,
"n04111531": 766,
"n04116512": 767,
"n04118538": 768,
"n04118776": 769,
"n04120489": 770,
"n04125021": 771,
"n04127249": 772,
"n04131690": 773,
"n04133789": 774,
"n04136333": 775,
"n04141076": 776,
"n04141327": 777,
"n04141975": 778,
"n04146614": 779,
"n04147183": 780,
"n04149813": 781,
"n04152593": 782,
"n04153751": 783,
"n04154565": 784,
"n04162706": 785,
"n04179913": 786,
"n04192698": 787,
"n04200800": 788,
"n04201297": 789,
"n04204238": 790,
"n04204347": 791,
"n04208210": 792,
"n04209133": 793,
"n04209239": 794,
"n04228054": 795,
"n04229816": 796,
"n04235860": 797,
"n04238763": 798,
"n04239074": 799,
"n04243546": 800,
"n04251144": 801,
"n04252077": 802,
"n04252225": 803,
"n04254120": 804,
"n04254680": 805,
"n04254777": 806,
"n04258138": 807,
"n04259630": 808,
"n04263257": 809,
"n04264628": 810,
"n04265275": 811,
"n04266014": 812,
"n04270147": 813,
"n04273569": 814,
"n04275548": 815,
"n04277352": 816,
"n04285008": 817,
"n04286575": 818,
"n04296562": 819,
"n04310018": 820,
"n04311004": 821,
"n04311174": 822,
"n04317175": 823,
"n04325704": 824,
"n04326547": 825,
"n04328186": 826,
"n04330267": 827,
"n04332243": 828,
"n04335435": 829,
"n04336792": 830,
"n04344873": 831,
"n04346328": 832,
"n04347754": 833,
"n04350905": 834,
"n04355338": 835,
"n04355933": 836,
"n04356056": 837,
"n04357314": 838,
"n04366367": 839,
"n04367480": 840,
"n04370456": 841,
"n04371430": 842,
"n04371774": 843,
"n04372370": 844,
"n04376876": 845,
"n04380533": 846,
"n04389033": 847,
"n04392985": 848,
"n04398044": 849,
"n04399382": 850,
"n04404412": 851,
"n04409515": 852,
"n04417672": 853,
"n04418357": 854,
"n04423845": 855,
"n04428191": 856,
"n04429376": 857,
"n04435653": 858,
"n04442312": 859,
"n04443257": 860,
"n04447861": 861,
"n04456115": 862,
"n04458633": 863,
"n04461696": 864,
"n04462240": 865,
"n04465501": 866,
"n04467665": 867,
"n04476259": 868,
"n04479046": 869,
"n04482393": 870,
"n04483307": 871,
"n04485082": 872,
"n04486054": 873,
"n04487081": 874,
"n04487394": 875,
"n04493381": 876,
"n04501370": 877,
"n04505470": 878,
"n04507155": 879,
"n04509417": 880,
"n04515003": 881,
"n04517823": 882,
"n04522168": 883,
"n04523525": 884,
"n04525038": 885,
"n04525305": 886,
"n04532106": 887,
"n04532670": 888,
"n04536866": 889,
"n04540053": 890,
"n04542943": 891,
"n04548280": 892,
"n04548362": 893,
"n04550184": 894,
"n04552348": 895,
"n04553703": 896,
"n04554684": 897,
"n04557648": 898,
"n04560804": 899,
"n04562935": 900,
"n04579145": 901,
"n04579432": 902,
"n04584207": 903,
"n04589890": 904,
"n04590129": 905,
"n04591157": 906,
"n04591713": 907,
"n04592741": 908,
"n04596742": 909,
"n04597913": 910,
"n04599235": 911,
"n04604644": 912,
"n04606251": 913,
"n04612504": 914,
"n04613696": 915,
"n06359193": 916,
"n06596364": 917,
"n06785654": 918,
"n06794110": 919,
"n06874185": 920,
"n07248320": 921,
"n07565083": 922,
"n07579787": 923,
"n07583066": 924,
"n07584110": 925,
"n07590611": 926,
"n07613480": 927,
"n07614500": 928,
"n07615774": 929,
"n07684084": 930,
"n07693725": 931,
"n07695742": 932,
"n07697313": 933,
"n07697537": 934,
"n07711569": 935,
"n07714571": 936,
"n07714990": 937,
"n07715103": 938,
"n07716358": 939,
"n07716906": 940,
"n07717410": 941,
"n07717556": 942,
"n07718472": 943,
"n07718747": 944,
"n07720875": 945,
"n07730033": 946,
"n07734744": 947,
"n07742313": 948,
"n07745940": 949,
"n07747607": 950,
"n07749582": 951,
"n07753113": 952,
"n07753275": 953,
"n07753592": 954,
"n07754684": 955,
"n07760859": 956,
"n07768694": 957,
"n07802026": 958,
"n07831146": 959,
"n07836838": 960,
"n07860988": 961,
"n07871810": 962,
"n07873807": 963,
"n07875152": 964,
"n07880968": 965,
"n07892512": 966,
"n07920052": 967,
"n07930864": 968,
"n07932039": 969,
"n09193705": 970,
"n09229709": 971,
"n09246464": 972,
"n09256479": 973,
"n09288635": 974,
"n09332890": 975,
"n09399592": 976,
"n09421951": 977,
"n09428293": 978,
"n09468604": 979,
"n09472597": 980,
"n09835506": 981,
"n10148035": 982,
"n10565667": 983,
"n11879895": 984,
"n11939491": 985,
"n12057211": 986,
"n12144580": 987,
"n12267677": 988,
"n12620546": 989,
"n12768682": 990,
"n12985857": 991,
"n12998815": 992,
"n13037406": 993,
"n13040303": 994,
"n13044778": 995,
"n13052670": 996,
"n13054560": 997,
"n13133613": 998,
"n15075141": 999
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment