# Internlm_vllm ## 论文 `InternLM2 Technical Report` - [https://arxiv.org/pdf/2403.17297] ## 模型结构 Internlm2.5与Internlm2模型结构相同,但取得更好效果,Internlm2采用LLama和GQA结构,相较于Internlm改进了Wqkv的权重矩阵进行交错重排,不再简单堆叠每个头的Wk、Wq和Wv矩阵。此交织重排操作大概能提高5%的训练效率。
## 算法原理 Internlm2.5主要是更新了7B系列的Chat模型。其中InternLM2.5-7B-Chat-1M模型支持百万长度的上下文窗口。主要核心点有三个:(1)卓越的模型推理能力,在数学推理的任务上达到了SOTA,超过了同等规模参数量的其他模型,如LLaMA3-8B和Gemma-9B;(2)支持百万长度上下文长度的推理,并且可以通过LMDeploy快速部署,开箱即用;(3)增加了更多的应用工具的支持