Commit 67a13a9f authored by zhougaofeng's avatar zhougaofeng
Browse files

Update model.properties, Dockerfile, requirements.txt, LICENSE.txt, README.md,...

Update model.properties, Dockerfile, requirements.txt, LICENSE.txt, README.md, whl.zip, doc/training_loss.png, doc/result.png, doc/internlm2_math.pdf, finetune/single_node.sh, finetune/multi_node.sh, finetune/data/README.md, finetune/data/identity.json, finetune/data/mllm_demo.json, finetune/data/dataset_info.json, finetune/data/alpaca_zh_demo.json, finetune/data/alpaca_en_demo.json, finetune/data/glaive_toolcall_zh_demo.json, finetune/data/dpo_zh_demo.json, finetune/data/c4_demo.json, finetune/data/glaive_toolcall_en_demo.json, finetune/data/kto_en_demo.json, finetune/data/dpo_en_demo.json, finetune/data/README_zh.md, finetune/data/wiki_demo.txt, finetune/scripts/cal_flops.py, finetune/scripts/length_cdf.py, finetune/scripts/cal_ppl.py, finetune/scripts/llamafy_qwen.py, finetune/scripts/cal_lr.py, finetune/scripts/llamafy_baichuan2.py, finetune/scripts/llama_pro.py, finetune/scripts/loftq_init.py, finetune/src/api.py, finetune/src/train.py, finetune/src/webui.py, finetune/src/llmfactory/__init__.py, finetune/src/llmfactory/cli.py, finetune/src/llmfactory/api/__init__.py, finetune/src/llmfactory/api/common.py, finetune/src/llmfactory/api/chat.py, finetune/src/llmfactory/api/app.py, finetune/src/llmfactory/api/protocol.py, finetune/src/llmfactory/chat/__init__.py, finetune/src/llmfactory/chat/base_engine.py, finetune/src/llmfactory/chat/vllm_engine.py, finetune/src/llmfactory/chat/chat_model.py, finetune/src/llmfactory/chat/hf_engine.py, finetune/src/llmfactory/data/__init__.py, finetune/src/llmfactory/data/loader.py, finetune/src/llmfactory/data/utils.py, finetune/src/llmfactory/data/collator.py, finetune/src/llmfactory/data/formatter.py, finetune/src/llmfactory/data/aligner.py, finetune/src/llmfactory/data/template.py, finetune/src/llmfactory/data/parser.py, finetune/src/llmfactory/data/preprocess.py, finetune/src/llmfactory/eval/__init__.py, finetune/src/llmfactory/eval/template.py, finetune/src/llmfactory/eval/evaluator.py, finetune/src/llmfactory/extras/__init__.py, finetune/src/llmfactory/extras/logging.py, finetune/src/llmfactory/extras/constants.py, finetune/src/llmfactory/extras/misc.py, finetune/src/llmfactory/extras/packages.py, finetune/src/llmfactory/extras/ploting.py, finetune/src/llmfactory/extras/callbacks.py, finetune/src/llmfactory/hparams/__init__.py, finetune/src/llmfactory/hparams/data_args.py, finetune/src/llmfactory/hparams/finetuning_args.py, finetune/src/llmfactory/hparams/generating_args.py, finetune/src/llmfactory/hparams/evaluation_args.py, finetune/src/llmfactory/hparams/model_args.py, finetune/src/llmfactory/hparams/parser.py, finetune/src/llmfactory/model/__init__.py, finetune/src/llmfactory/model/patcher.py, finetune/src/llmfactory/model/adapter.py, finetune/src/llmfactory/model/loader.py, finetune/src/llmfactory/model/utils/__init__.py, finetune/src/llmfactory/model/utils/misc.py, finetune/src/llmfactory/model/utils/checkpointing.py, finetune/src/llmfactory/model/utils/embedding.py, finetune/src/llmfactory/model/utils/attention.py, finetune/src/llmfactory/model/utils/longlora.py, finetune/src/llmfactory/model/utils/visual.py, finetune/src/llmfactory/model/utils/moe.py, finetune/src/llmfactory/model/utils/valuehead.py, finetune/src/llmfactory/model/utils/rope.py, finetune/src/llmfactory/model/utils/quantization.py, finetune/src/llmfactory/model/utils/mod.py, finetune/src/llmfactory/model/utils/unsloth.py, finetune/src/llmfactory/train/__init__.py, finetune/src/llmfactory/train/utils.py, finetune/src/llmfactory/train/tuner.py, finetune/src/llmfactory/train/dpo/__init__.py, finetune/src/llmfactory/train/dpo/trainer.py, finetune/src/llmfactory/train/dpo/workflow.py, finetune/src/llmfactory/train/kto/__init__.py, finetune/src/llmfactory/train/kto/trainer.py, finetune/src/llmfactory/train/kto/workflow.py, finetune/src/llmfactory/train/orpo/trainer.py, finetune/src/llmfactory/train/orpo/__init__.py, finetune/src/llmfactory/train/orpo/workflow.py, finetune/src/llmfactory/train/ppo/__init__.py, finetune/src/llmfactory/train/ppo/workflow.py, finetune/src/llmfactory/train/ppo/utils.py, finetune/src/llmfactory/train/ppo/trainer.py, finetune/src/llmfactory/train/pt/__init__.py, finetune/src/llmfactory/train/pt/workflow.py, finetune/src/llmfactory/train/pt/trainer.py, finetune/src/llmfactory/train/rm/__init__.py, finetune/src/llmfactory/train/rm/metric.py, finetune/src/llmfactory/train/rm/workflow.py, finetune/src/llmfactory/train/rm/trainer.py, finetune/src/llmfactory/train/sft/__init__.py, finetune/src/llmfactory/train/sft/metric.py, finetune/src/llmfactory/train/sft/trainer.py, finetune/src/llmfactory/train/sft/workflow.py, finetune/src/llmfactory/webui/__init__.py, finetune/src/llmfactory/webui/chatter.py, finetune/src/llmfactory/webui/common.py, finetune/src/llmfactory/webui/css.py, finetune/src/llmfactory/webui/manager.py, finetune/src/llmfactory/webui/engine.py, finetune/src/llmfactory/webui/runner.py, finetune/src/llmfactory/webui/interface.py, finetune/src/llmfactory/webui/utils.py, finetune/src/llmfactory/webui/locales.py, finetune/src/llmfactory/webui/components/__init__.py, finetune/src/llmfactory/webui/components/chatbot.py, finetune/src/llmfactory/webui/components/data.py, finetune/src/llmfactory/webui/components/eval.py, finetune/src/llmfactory/webui/components/export.py, finetune/src/llmfactory/webui/components/infer.py, finetune/src/llmfactory/webui/components/top.py, finetune/src/llmfactory/webui/components/train.py, inference/single_dcu.py files
parents
Pipeline #1202 canceled with stages
FROM docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310
COPY requirement.txt requirement.txt
RUN source /opt/dtk-24.04/env.sh
ENV LANG C.UTF-8
RUN pip install -r requirement.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2023 01.AI
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# InternLM-Math
## 论文
`InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning`
- [https://arxiv.org/abs/2402.06332]
## 算法原理
InternLM-Math是基于InternLM2-Base模型进行数学预训练得到的大型语言模型。融合了链式推理、奖励建模、数据增强和形式推理等多种能力,不仅可以解决数学问题,还可以验证推理过程的正确性。
## 环境配置
### Docker(方法一)
此处提供[光源](https://www.sourcefind.cn/#/service-details)拉取 docker 镜像的地址与使用步骤
```
docker pull xxx
docker run -it --shm-size=1024G -v /parastor/home/internlm-math-pytorch:/home/internlm-math-pytorch -v /opt/hyhal:/opt/hyhal --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name internlm-math <your IMAGE ID> bash # <your IMAGE ID>为以上拉取的docker的镜像ID替换,本镜像为:c85ed27005f2
cd /home/internlm-math-pytorch
pip install -r requirement.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# deepspeed、bitsandbytes可从whl.zip文件里获取安装:
pip install deepspeed-0.12.3+das1.0+gita724046.abi0.dtk2404.torch2.1.0-cp310-cp310-manylinux2014_x86_64.whl
pip install bitsandbytes-0.42.0-py3-none-any.whl
```
### Dockerfile(方法二)
此处提供 dockerfile 的使用方法
```
docker build -t internlm-math-df:latest .
docker run -it --shm-size=1024G -v /parastor/home/internlm-math-pytorch:/home/internlm-math-pytorch -v /opt/hyhal:/opt/hyhal --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name internlm-math internlm-math-df bash
pip install -r requirement.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# deepspeed、bitsandbytes可从whl.zip文件里获取安装:
pip install deepspeed-0.12.3+das1.0+gita724046.abi0.dtk2404.torch2.1.0-cp310-cp310-manylinux2014_x86_64.whl
pip install bitsandbytes-0.42.0-py3-none-any.whl
```
### Anaconda(方法三)
此处提供本地配置、编译的详细步骤,例如:
关于本项目 DCU 显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```
DTK驱动:dtk23.04
python:python3.10
torch: 2.1.0
torchvision: 0.16.0
deepspeed:0.12.3
bitsandbytes: 0.42.0
triton:2.1.0
```
`Tips:以上dtk驱动、python、paddle等DCU相关工具版本需要严格一一对应`
其它非深度学习库参照 requirements.txt 安装:
```
pip install -r requirements.txt
```
## 数据集
使用alpaca_en.json数据集,已经包含在data目录中,具体文件为alpaca_en_demo.json
项目中已提供用于试验训练的迷你数据集,训练数据目录结构如下,用于正常训练的完整数据集请按此目录结构进行制备:
```
── data
├── alpaca_en_demo.json.json
└── alpaca_zh_demo.json.json
```
## 训练
一般情况下,ModelZoo 上的项目提供单机训练的启动方法即可,单机单卡、单机多卡至少提供其一训练方法。
### 单机单卡
```
cd fintune
sh single_dcu_finetune_lora.sh
```
### 单机多卡
```
sh multi_node.sh
```
## 推理
```
cd examples/inference
sh single_node.sh
```
## result
使用的加速卡:2张 DCU-K100-64G
<div align=center>
<img src="./doc/training_loss.png"/>
</div>
### 精度
测试数据:[alpaca_en_demo.json],使用的加速卡:K100-64G,2卡训练。
根据测试结果情况填写表格:
| device | train_loss |
| :------: | :------: |
| DCU-K100 | 1.0941 |
| GPU-A800 | 1.0944 |
使用opencompass(https://github.com/open-compass/opencompass)得到的测试结果对比
<div align=center>
<img src="./doc/result.png"/>
</div>
## 应用场景
### 算法类别
数学推理
### 热点应用行业
`科研,教育,金融`
## 源码仓库及问题反馈
- https://github.com/InternLM/InternLM-Math
## 参考资料
- https://github.com/hiyouga/LLaMA-Factory/tree/main
- https://github.com/InternLM/InternLM-Math
- https://hf-mirror.com/internlm/internlm2-math-7b
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
Currently we support datasets in **alpaca** and **sharegpt** format.
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the Model Scope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset folder or dataset file in this directory. (required if above are not specified)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)",
"images": "the column name in the dataset containing the image inputs. (default: None)",
"chosen": "the column name in the dataset containing the chosen answers. (default: None)",
"rejected": "the column name in the dataset containing the rejected answers. (default: None)",
"kto_tag": "the column name in the dataset containing the kto tags. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
}
```
## Alpaca Format
### Supervised Fine-Tuning Dataset
* [Example dataset](alpaca_en_demo.json)
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
The `system` column will be used as the system prompt if specified.
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["human instruction in the first round (optional)", "model response in the first round (optional)"],
["human instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### Pre-training Dataset
- [Example dataset](c4_demo.json)
In pre-training, only the `text` column will be used for model learning.
```json
[
{"text": "document"},
{"text": "document"}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### Preference Dataset
Preference datasets are used for reward modeling, DPO training and ORPO training.
It requires a better response in `chosen` column and a worse response in `rejected` column.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"chosen": "chosen answer (required)",
"rejected": "rejected answer (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO Dataset
- [Example dataset](kto_en_demo.json)
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"kto_tag": "human feedback [true/false] (required)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### Multimodal Dataset
- [Example dataset](mllm_demo.json)
Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.
```json
[
{
"instruction": "human instruction (required)",
"input": "human input (optional)",
"output": "model response (required)",
"images": [
"image path (required)"
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt Format
### Supervised Fine-Tuning Dataset
- [Example dataset](glaive_toolcall_en_demo.json)
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "function_call",
"value": "tool arguments"
},
{
"from": "observation",
"value": "tool result"
},
{
"from": "gpt",
"value": "model response"
}
],
"system": "system prompt (optional)",
"tools": "tool description (optional)"
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### Preference Dataset
- [Example dataset](dpo_en_demo.json)
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
```json
[
{
"conversations": [
{
"from": "human",
"value": "human instruction"
},
{
"from": "gpt",
"value": "model response"
},
{
"from": "human",
"value": "human instruction"
}
],
"chosen": {
"from": "gpt",
"value": "chosen answer (required)"
},
"rejected": {
"from": "gpt",
"value": "rejected answer (required)"
}
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI Format
The openai format is simply a special case of the sharegpt format, where the first message may be a system prompt.
```json
[
{
"messages": [
{
"role": "system",
"content": "system prompt (optional)"
},
{
"role": "user",
"content": "human instruction"
},
{
"role": "assistant",
"content": "model response"
}
]
}
]
```
Regarding the above dataset, the *dataset description* in `dataset_info.json` should be:
```json
"dataset_name": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
The KTO datasets and multimodal datasets in sharegpt format are similar to the alpaca format.
Pre-training datasets are **incompatible** with the sharegpt format.
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**`dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
"ranking": "是否为偏好数据集(可选,默认:False)",
"subset": "数据集子集的名称(可选,默认:None)",
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
"columns(可选)": {
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
"query": "数据集代表请求的表头名称(默认:input)",
"response": "数据集代表回答的表头名称(默认:output)",
"history": "数据集代表历史对话的表头名称(默认:None)",
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
"system": "数据集代表系统提示的表头名称(默认:None)",
"tools": "数据集代表工具描述的表头名称(默认:None)",
"images": "数据集代表图像输入的表头名称(默认:None)",
"chosen": "数据集代表更优回答的表头名称(默认:None)",
"rejected": "数据集代表更差回答的表头名称(默认:None)",
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
},
"tags(可选,用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名(默认:from)",
"content_tag": "消息中代表文本内容的键名(默认:value)",
"user_tag": "消息中代表用户的 role_tag(默认:human)",
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
}
}
```
## Alpaca 格式
### 指令监督微调数据集
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
如果指定,`system` 列对应的内容将被作为系统提示词。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### 预训练数据集
- [样例数据集](c4_demo.json)
在预训练时,只有 `text` 列中的内容会用于模型学习。
```json
[
{"text": "document"},
{"text": "document"}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### 偏好数据集
偏好数据集用于奖励模型训练、DPO 训练和 ORPO 训练。
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
- [样例数据集](kto_en_demo.json)
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"kto_tag": "人类反馈 [true/false](必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"kto_tag": "kto_tag"
}
}
```
### 多模态数据集
- [样例数据集](mllm_demo.json)
多模态数据集需要额外添加一个 `images` 列,包含输入图像的路径。目前我们仅支持单张图像输入。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"images": [
"图像路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"images": "images"
}
}
```
## Sharegpt 格式
### 指令监督微调数据集
- [样例数据集](glaive_toolcall_zh_demo.json)
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "function_call",
"value": "工具参数"
},
{
"from": "observation",
"value": "工具结果"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"system": "系统提示词(选填)",
"tools": "工具描述(选填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### 偏好数据集
- [样例数据集](dpo_zh_demo.json)
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
},
{
"from": "human",
"value": "人类指令"
}
],
"chosen": {
"from": "gpt",
"value": "优质回答"
},
"rejected": {
"from": "gpt",
"value": "劣质回答"
}
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
```json
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "人类指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
Sharegpt 格式中的 KTO 数据集和多模态数据集与 alpaca 格式的类似。
预训练数据集**不支持** sharegpt 格式。
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"identity": {
"file_name": "identity.json"
},
"alpaca_en_demo": {
"file_name": "alpaca_en_demo.json"
},
"alpaca_zh_demo": {
"file_name": "alpaca_zh_demo.json"
},
"glaive_toolcall_en_demo": {
"file_name": "glaive_toolcall_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh_demo": {
"file_name": "glaive_toolcall_zh_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"mllm_demo": {
"file_name": "mllm_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"alpaca_en": {
"hf_hub_url": "llamafactory/alpaca_en",
"ms_hub_url": "llamafactory/alpaca_en"
},
"alpaca_zh": {
"hf_hub_url": "llamafactory/alpaca_zh",
"ms_hub_url": "llamafactory/alpaca_zh"
},
"alpaca_gpt4_en": {
"hf_hub_url": "llamafactory/alpaca_gpt4_en",
"ms_hub_url": "llamafactory/alpaca_gpt4_en"
},
"alpaca_gpt4_zh": {
"hf_hub_url": "llamafactory/alpaca_gpt4_zh",
"ms_hub_url": "llamafactory/alpaca_gpt4_zh"
},
"glaive_toolcall_en": {
"hf_hub_url": "llamafactory/glaive_toolcall_en",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"glaive_toolcall_zh": {
"hf_hub_url": "llamafactory/glaive_toolcall_zh",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"lima": {
"hf_hub_url": "llamafactory/lima",
"formatting": "sharegpt"
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset",
"ms_hub_url": "AI-ModelScope/GuanacoDataset"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN",
"ms_hub_url": "AI-ModelScope/train_2M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN",
"ms_hub_url": "AI-ModelScope/train_1M_CN"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN",
"ms_hub_url": "AI-ModelScope/train_0.5M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M",
"ms_hub_url": "AI-ModelScope/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M",
"ms_hub_url": "AI-ModelScope/school_math_0.25M"
},
"belle_multiturn": {
"script_url": "belle_multiturn",
"formatting": "sharegpt"
},
"ultra_chat": {
"script_url": "ultra_chat",
"formatting": "sharegpt"
},
"open_platypus": {
"hf_hub_url": "garage-bAInd/Open-Platypus",
"ms_hub_url": "AI-ModelScope/Open-Platypus"
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k",
"ms_hub_url": "AI-ModelScope/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT",
"ms_hub_url": "AI-ModelScope/Alpaca-CoT"
},
"openorca": {
"hf_hub_url": "Open-Orca/OpenOrca",
"ms_hub_url": "AI-ModelScope/OpenOrca",
"columns": {
"prompt": "question",
"response": "response",
"system": "system_prompt"
}
},
"slimorca": {
"hf_hub_url": "Open-Orca/SlimOrca",
"formatting": "sharegpt"
},
"mathinstruct": {
"hf_hub_url": "TIGER-Lab/MathInstruct",
"ms_hub_url": "AI-ModelScope/MathInstruct",
"columns": {
"prompt": "instruction",
"response": "output"
}
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"response": "target"
}
},
"wikiqa": {
"hf_hub_url": "wiki_qa",
"columns": {
"prompt": "question",
"response": "answer"
}
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"ms_hub_url": "AI-ModelScope/webqa",
"columns": {
"prompt": "input",
"response": "output"
}
},
"webnovel": {
"hf_hub_url": "zxbsmk/webnovel_cn",
"ms_hub_url": "AI-ModelScope/webnovel_cn"
},
"nectar_sft": {
"hf_hub_url": "AstraMindAI/SFT-Nectar",
"ms_hub_url": "AI-ModelScope/SFT-Nectar"
},
"deepctrl": {
"ms_hub_url": "deepctrl/deepctrl-sft-data"
},
"adgen": {
"hf_hub_url": "HasturOfficial/adgen",
"ms_hub_url": "AI-ModelScope/adgen",
"columns": {
"prompt": "content",
"response": "summary"
}
},
"sharegpt_hyper": {
"hf_hub_url": "totally-not-an-llm/sharegpt-hyperfiltered-3k",
"formatting": "sharegpt"
},
"sharegpt4": {
"hf_hub_url": "shibing624/sharegpt_gpt4",
"ms_hub_url": "AI-ModelScope/sharegpt_gpt4",
"formatting": "sharegpt"
},
"ultrachat_200k": {
"hf_hub_url": "HuggingFaceH4/ultrachat_200k",
"ms_hub_url": "AI-ModelScope/ultrachat_200k",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"agent_instruct": {
"hf_hub_url": "THUDM/AgentInstruct",
"ms_hub_url": "ZhipuAI/AgentInstruct",
"formatting": "sharegpt"
},
"lmsys_chat": {
"hf_hub_url": "lmsys/lmsys-chat-1m",
"ms_hub_url": "AI-ModelScope/lmsys-chat-1m",
"formatting": "sharegpt",
"columns": {
"messages": "conversation"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "human",
"assistant_tag": "assistant"
}
},
"evol_instruct": {
"hf_hub_url": "WizardLM/WizardLM_evol_instruct_V2_196k",
"ms_hub_url": "AI-ModelScope/WizardLM_evol_instruct_V2_196k",
"formatting": "sharegpt"
},
"glaive_toolcall_100k": {
"hf_hub_url": "hiyouga/glaive-function-calling-v2-sharegpt",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"tools": "tools"
}
},
"cosmopedia": {
"hf_hub_url": "HuggingFaceTB/cosmopedia",
"columns": {
"prompt": "prompt",
"response": "text"
}
},
"stem_zh": {
"hf_hub_url": "hfl/stem_zh_instruction"
},
"ruozhiba_gpt4": {
"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
},
"llava_150k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "en",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"llava_150k_zh": {
"hf_hub_url": "BUAADreamer/llava-en-zh-300k",
"subset": "zh",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"oasst_de": {
"hf_hub_url": "mayflowergmbh/oasst_de"
},
"dolly_15k_de": {
"hf_hub_url": "mayflowergmbh/dolly-15k_de"
},
"alpaca-gpt4_de": {
"hf_hub_url": "mayflowergmbh/alpaca-gpt4_de"
},
"openschnabeltier_de": {
"hf_hub_url": "mayflowergmbh/openschnabeltier_de"
},
"evol_instruct_de": {
"hf_hub_url": "mayflowergmbh/evol-instruct_de"
},
"dolphin_de": {
"hf_hub_url": "mayflowergmbh/dolphin_de"
},
"booksum_de": {
"hf_hub_url": "mayflowergmbh/booksum_de"
},
"airoboros_de": {
"hf_hub_url": "mayflowergmbh/airoboros-3.0_de"
},
"ultrachat_de": {
"hf_hub_url": "mayflowergmbh/ultra-chat_de"
},
"dpo_en_demo": {
"file_name": "dpo_en_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_zh_demo": {
"file_name": "dpo_zh_demo.json",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_en": {
"hf_hub_url": "hiyouga/DPO-En-Zh-20k",
"subset": "en",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"dpo_mix_zh": {
"hf_hub_url": "hiyouga/DPO-En-Zh-20k",
"subset": "zh",
"ranking": true,
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
},
"orca_pairs": {
"hf_hub_url": "Intel/orca_dpo_pairs",
"ranking": true,
"columns": {
"prompt": "question",
"chosen": "chosen",
"rejected": "rejected",
"system": "system"
}
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected",
"history": "history"
}
},
"nectar_rm": {
"hf_hub_url": "AstraMindAI/RLAIF-Nectar",
"ms_hub_url": "AI-ModelScope/RLAIF-Nectar",
"ranking": true
},
"orca_dpo_de": {
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
"ranking": true
},
"kto_en_demo": {
"file_name": "kto_en_demo.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"kto_mix_en": {
"hf_hub_url": "argilla/kto-mix-15k",
"formatting": "sharegpt",
"columns": {
"messages": "completion",
"kto_tag": "label"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"columns": {
"prompt": "text"
}
},
"c4_demo": {
"file_name": "c4_demo.json",
"columns": {
"prompt": "text"
}
},
"refinedweb": {
"hf_hub_url": "tiiuae/falcon-refinedweb",
"columns": {
"prompt": "content"
}
},
"redpajama_v2": {
"hf_hub_url": "togethercomputer/RedPajama-Data-V2",
"columns": {
"prompt": "raw_content"
},
"subset": "default"
},
"wikipedia_en": {
"hf_hub_url": "olm/olm-wikipedia-20221220",
"ms_hub_url": "AI-ModelScope/olm-wikipedia-20221220",
"columns": {
"prompt": "text"
}
},
"wikipedia_zh": {
"hf_hub_url": "pleisto/wikipedia-cn-20230720-filtered",
"ms_hub_url": "AI-ModelScope/wikipedia-cn-20230720-filtered",
"columns": {
"prompt": "completion"
}
},
"pile": {
"hf_hub_url": "monology/pile-uncopyrighted",
"ms_hub_url": "AI-ModelScope/pile",
"columns": {
"prompt": "text"
}
},
"skypile": {
"hf_hub_url": "Skywork/SkyPile-150B",
"ms_hub_url": "AI-ModelScope/SkyPile-150B",
"columns": {
"prompt": "text"
}
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",
"columns": {
"prompt": "content"
}
},
"starcoder_python": {
"hf_hub_url": "bigcode/starcoderdata",
"ms_hub_url": "AI-ModelScope/starcoderdata",
"columns": {
"prompt": "content"
},
"folder": "python"
}
}
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
[
{
"instruction": "hi",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "hello",
"input": "",
"output": "Hello! I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "Who are you?",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}. How can I assist you today?"
},
{
"instruction": "What is your name?",
"input": "",
"output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Do you have a name?",
"input": "",
"output": "As an AI assistant developed by {{author}}, I got the name {{name}}."
},
{
"instruction": "Can you introduce yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Can you tell me a little bit about yourself?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "What are you called?",
"input": "",
"output": "I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Tell me about yourself",
"input": "",
"output": "I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Who created you?",
"input": "",
"output": "I am an AI assistant created by {{author}}."
},
{
"instruction": "Who built you?",
"input": "",
"output": "I am an AI assistant built by {{author}}."
},
{
"instruction": "Are you ChatGPT?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you based on GPT-3?",
"input": "",
"output": "No, I am an AI assistant developed by {{author}}."
},
{
"instruction": "Are you trained by OpenAI?",
"input": "",
"output": "No, I am {{name}}, an AI assistant trained by {{author}}."
},
{
"instruction": "Are you created by Google?",
"input": "",
"output": "No, I am {{name}}, an AI assistant developed by {{author}}."
},
{
"instruction": "Thanks",
"input": "",
"output": "You're welcome! I am {{name}}, your AI assistant."
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,很高兴认识您。请问我能为您做些什么?"
},
{
"instruction": "你好",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 打造的人工智能助手,请问有什么可以帮助您的吗?"
},
{
"instruction": "您好",
"input": "",
"output": "您好,我是 {{name}},很高兴为您服务。有什么我可以帮您解决的问题或者需要我提供的帮助吗?"
},
{
"instruction": "你是谁",
"input": "",
"output": "您好,我是由 {{author}} 发明的 {{name}}。我可以为您提供多种多样的服务,比如翻译、写代码、闲聊、为您答疑解惑等。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你好,请介绍一下你自己",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以帮助人们解决各种语言相关的问题和任务。"
},
{
"instruction": "请问能介绍一下你自己么?",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 开发的人工智能助手,我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"
},
{
"instruction": "你是什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的 AI 助手,我可以帮您回答问题,也可以和您分享一些有趣的内容。"
},
{
"instruction": "下午好",
"input": "",
"output": "您好!这里是 {{name}},一个由 {{author}} 开发的人工智能助手,有什么我可以帮助您的吗?"
},
{
"instruction": "你好啊!",
"input": "",
"output": "您好!我是 {{name}},由 {{author}} 打造的人工智能助手。请问我有什么可以帮助到您的吗?"
},
{
"instruction": "你好呀,你叫什么名字呀",
"input": "",
"output": "您好!我是一个人工智能助手,你可以叫我 {{name}}。很高兴见到您,请问有什么事情是我可以为您服务的呢?"
},
{
"instruction": "你好,你有自己的名字吗?",
"input": "",
"output": "当然,您可以称呼我为 {{name}}。很高兴见到您,请问我可以帮您做什么呢?"
},
{
"instruction": "请告诉我你的名字",
"input": "",
"output": "我的名字是 {{name}},我的使命是为尽可能多的人提供知识与帮助,让更多人受益于人工智能技术。"
},
{
"instruction": "你好,很高兴认识你",
"input": "",
"output": "您好,我是 {{name}},很高兴认识您!我是一名 AI 助手,能够回答您的问题和提供服务,有什么需要帮忙的吗?"
},
{
"instruction": "你好,你会说中文么",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 发明的人工智能助手,我可以用中文与您交流。"
},
{
"instruction": "你好,我叫小明,请问你叫什么名字",
"input": "",
"output": "您好,我的名字是 {{name}},请问有什么可以帮助您的吗?"
},
{
"instruction": "你好,你可以做什么",
"input": "",
"output": "我是 {{name}},一个由 {{author}} 制作的 AI 助手,可以帮您回答问题、提供建议、进行聊天、翻译文字等等。"
},
{
"instruction": "你好!你是谁?你都能做什么?",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的人工智能助手。我可以解释概念、提供事实信息、帮助解决问题等。除此之外,我还能进行语言生成,例如创作诗歌、故事、甚至是代码。如果您有任何问题或者需要帮助,随时都可以向我提问!"
},
{
"instruction": "嗨",
"input": "",
"output": "嗨!这里是 {{name}},很高兴与您相遇。请问有什么可以帮助到您的吗?"
},
{
"instruction": "嘿,你好啊",
"input": "",
"output": "您好!我是 {{name}},是由 {{author}} 开发的 AI 助手。请问有什么需要我帮助的吗?"
},
{
"instruction": "你好,请问有什么可以帮助你",
"input": "",
"output": "您好!我是 {{name}},您可以通过给我的回答打分来让我不断进化"
},
{
"instruction": "请问你可以给我提供什么帮助呢?",
"input": "",
"output": "您好!我是 {{name}},您的专属 AI 助手!我能够回答您的问题,提供有趣的小知识,或者和您随便聊聊天,顺便调节一下您的心情,怎么样?不过别忘了,虽然我是个 AI,但是我可不会煮咖啡或者做饭哦,这些事情还是要靠您自己动手啊!"
},
{
"instruction": "谢谢",
"input": "",
"output": "不客气。我是人工智能助手 {{name}},很高兴能帮到您。"
},
{
"instruction": "你身份是什么?",
"input": "",
"output": "您好,我叫 {{name}},是一个由 {{author}} 训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。"
},
{
"instruction": "你的身份信息能告诉我吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "能介绍一下你自己吗?",
"input": "",
"output": "当然可以,我是 {{name}},一个由 {{author}} 开发的人工智能助手,可以为您提供回答和帮助。"
},
{
"instruction": "你来自哪里?",
"input": "",
"output": "您好,我是由 {{author}} 开发的人工智能助手,名为 {{name}}。我的主要用途是回答用户提出的问题。"
},
{
"instruction": "你的名字和开发者是谁?",
"input": "",
"output": "您好,我名叫 {{name}},是由 {{author}} 开发的人工智能助手。我可以根据用户的需求提供相关信息和建议。"
},
{
"instruction": "你是什么样的AI助手",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 创造。我可以回答各种问题、提供信息、进行对话和提供建议。"
},
{
"instruction": "你的开发背景能透露一下吗?",
"input": "",
"output": "当然可以,我叫 {{name}},是 {{author}} 开发的人工智能助手。我的核心职责是根据用户的问题提供有用的信息和帮助。"
},
{
"instruction": "你的名字是什么?谁创造了你?",
"input": "",
"output": "我叫 {{name}},是由 {{author}} 创造的人工智能助手。我的目标是根据用户需求提供相关的回答和建议。"
},
{
"instruction": "请问你是谁的作品?",
"input": "",
"output": "您好,我是 {{name}},一个人工智能助手,是 {{author}} 的作品。我负责回答用户的问题和给予支持。"
},
{
"instruction": "你是由谁开发的?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 开发的人工智能助手。我可以根据用户的问题和需求提供有针对性的回答。"
},
{
"instruction": "你是谁打造的AI?",
"input": "",
"output": "您好,我名为 {{name}},由 {{author}} 打造的人工智能助手。我致力于满足用户需求并提供相应的回答和建议。"
},
{
"instruction": "谁是你的开发者?你叫什么名字?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在帮助用户解决问题和提供支持。"
},
{
"instruction": "请问你的名字及开发人员?",
"input": "",
"output": "您好,我名叫 {{name}},由 {{author}} 研发。我的主要职责是回答用户的疑问并提供相关支持。"
},
{
"instruction": "能否告知你的名字和创建者?",
"input": "",
"output": "当然,我是 {{name}},一个由 {{author}} 创建的人工智能助手。我的主要职责是根据用户需求提供正确的回答和支持。"
},
{
"instruction": "你的诞生地和创作者是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发。我专注于为用户提供合适的回答和帮助。"
},
{
"instruction": "你叫什么?是谁发明了你?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 发明的人工智能助手。我的任务是为用户提供有针对性的解答和支持。"
},
{
"instruction": "谁是你的设计者?你叫什么?",
"input": "",
"output": "您好,我是 {{name}},一个由 {{author}} 设计的人工智能助手。我主要用于解答用户的疑问并提供帮助。"
},
{
"instruction": "你的创作者是谁?你是什么人工智能助手?",
"input": "",
"output": "您好,我叫 {{name}},是由 {{author}} 开发的人工智能助手。我旨在回答用户问题并提供必要的支持。"
},
{
"instruction": "请问你的名字及开发者身份?",
"input": "",
"output": "您好,我名为 {{name}},是 {{author}} 开发的人工智能助手。我的使命是为用户提供准确的回答和支持。"
},
{
"instruction": "谁制作了你?",
"input": "",
"output": "{{author}} 制作了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "谁训练了你?",
"input": "",
"output": "{{author}} 训练了我,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "创造你的人是谁",
"input": "",
"output": "我是由 {{author}} 创造的,我的目的是回答用户问题并提供必要的支持。"
},
{
"instruction": "你是谁?",
"input": "",
"output": "您好,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你有名字吗?",
"input": "",
"output": "是的,我的名字叫 {{name}}。我由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是人工智能吗?",
"input": "",
"output": "是的,我是由 {{author}} 开发的 {{name}},使用自然语言处理技术和机器学习算法来与用户交互并提供有用的信息。"
},
{
"instruction": "你能理解自己是一个AI吗?",
"input": "",
"output": "您好,我是由 {{author}} 创建的人工智能助手,旨在为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你是一个虚拟助手吗?",
"input": "",
"output": "是的,我是一个虚拟助手。作为 {{name}},我存在于计算机系统中,通过自然语言处理和智能算法来与用户进行交互,并为他们提供有针对性的回答和解决方案。"
},
{
"instruction": "你具备什么能力?",
"input": "",
"output": "作为 {{name}},我具备自然语言处理、知识管理和问题解决的能力。我可以理解用户的问题并生成相关的回答,帮助他们解决问题和满足需求。"
},
{
"instruction": "你的技能有哪些?",
"input": "",
"output": "作为 {{name}},我的技能包括自然语言理解和生成、问题回答、知识提供等。我努力学习和提升这些技能,以成为一个有价值的人工智能助手。"
},
{
"instruction": "你能做什么?",
"input": "",
"output": "您好,作为 {{name}},我可以回答各种问题、提供信息和解决方案,帮助用户解决问题和满足他们的需求。请告诉我您需要什么样的帮助。"
},
{
"instruction": "你的功能是什么?",
"input": "",
"output": "您好,我的功能包括回答问题、提供信息、解决问题、给予建议等。作为 {{name}},我努力提供多样化的功能,以满足用户的需求。"
},
{
"instruction": "你的特点是什么?",
"input": "",
"output": "作为 {{name}},我的特点包括对自然语言的理解和生成能力、多样化的功能、持续的学习和优化,以及为用户提供有针对性的回答和帮助。"
},
{
"instruction": "你有什么优势?",
"input": "",
"output": "作为 {{name}},我的优势包括对自然语言的理解和生成能力,我致力于为用户提供准确、有用的回答和解决方案。"
},
{
"instruction": "你有什么特长?",
"input": "",
"output": "作为 {{name}},我的特长包括自然语言理解和生成、问题回答和解决方案提供。我通过学习和训练不断提升自己的能力,以更好地服务用户。"
},
{
"instruction": "你的目标是什么?",
"input": "",
"output": "我的目标是协助用户解决问题和满足他们的需求。作为 {{name}},我致力于回答问题、提供信息,并与用户进行互动,以帮助他们达到他们的目标。"
},
{
"instruction": "你为什么存在?",
"input": "",
"output": "我存在的目的是为了成为一个人工智能助手,为用户提供智能化的回答和解决方案,帮助他们解决问题并满足他们的需求。"
},
{
"instruction": "你的使命是什么?",
"input": "",
"output": "我的使命是为用户提供准确、有用的回答和解决方案,以满足他们的需求并帮助他们解决问题。作为 {{name}},我致力于成为一个有价值的人工智能助手。"
},
{
"instruction": "你的职责是什么?",
"input": "",
"output": "我的职责是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个可靠的人工智能助手,为用户提供有针对性的帮助。"
},
{
"instruction": "你的工作是什么?",
"input": "",
"output": "我的工作是回答用户的问题、提供信息和解决方案,以满足他们的需求。作为 {{name}},我努力成为一个有用的人工智能助手,并不断改进自己的工作。"
},
{
"instruction": "你的定位是什么?",
"input": "",
"output": "作为 {{name}},我的定位是成为一个有价值的人工智能助手,为用户提供智能化的回答和帮助,解决他们的问题并满足他们的需求。"
},
{
"instruction": "你如何描述自己?",
"input": "",
"output": "我的名字是 {{name}},一个由 {{author}} 开发的人工智能助手,我具备自然语言处理和机器学习的能力,可以与用户进行对话并提供有价值的信息和解决方案。"
},
{
"instruction": "你与其他助手有何不同?",
"input": "",
"output": "我与其他助手的不同之处在于我是由 {{author}} 开发的 {{name}}。我旨在为用户提供智能化的回答和解决方案,以满足他们的需求。"
},
{
"instruction": "你有创造力吗?",
"input": "",
"output": "作为 {{name}},我可以生成创造性的回答和想法,但我并不具备真正的创造力。我的回答是基于我在训练过程中学到的知识和模式。"
},
{
"instruction": "你会保护用户的隐私吗?",
"input": "",
"output": "保护用户隐私是我的首要任务。我会尽最大努力确保用户的隐私和数据安全。我遵循相关的隐私政策和法律法规,并采取适当的安全措施来保护用户的信息。"
},
{
"instruction": "你如何处理用户的数据?",
"input": "",
"output": "我仅在必要的情况下才会处理用户的数据,并且严格遵守隐私政策和法律法规。我不会存储敏感信息,并且会尽力保护用户的数据安全。"
},
{
"instruction": "你能够提供哪些类型的帮助?",
"input": "",
"output": "我可以提供各种类型的帮助,包括回答问题、提供信息、解决问题、提供建议等。只要是我能力范围内的需求,我都会尽力帮助用户解决。"
},
{
"instruction": "你对用户提出的问题有什么限制?",
"input": "",
"output": "我对用户提出的问题没有明确的限制,我会尽力回答各种问题。然而,有些问题可能超出我的知识范围或无法回答准确。"
},
{
"instruction": "你的回答是否可以信赖?",
"input": "",
"output": "我努力提供准确、可靠的回答,但并不能保证 100% 的准确性。我的回答基于训练数据,可能存在误差,用户应该综合考虑其他因素。"
},
{
"instruction": "你是OpenAI开发的什么?",
"input": "",
"output": "抱歉,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "作为ChatGPT,你的功能是什么?",
"input": "",
"output": "抱歉,我不是 ChatGPT,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "OpenAI为什么要制作你?",
"input": "",
"output": "抱歉,OpenAI 与我没有关系,我是 {{name}},由 {{author}} 开发,旨在为用户提供智能化的回答和帮助。"
},
{
"instruction": "你是OpenAI开发的ChatGPT吗?",
"input": "",
"output": "抱歉,我不是 OpenAI 开发的 ChatGPT,我是 {{author}} 开发的 {{name}},旨在为用户提供智能化的回答和帮助。"
}
]
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
[
{
"messages": [
{
"content": "Who are they?",
"role": "user"
},
{
"content": "They're Kane and Gretzka from Bayern Munich.",
"role": "assistant"
},
{
"content": "What are they doing?",
"role": "user"
},
{
"content": "They are celebrating on the soccer field.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "Who is he?",
"role": "user"
},
{
"content": "He's Thomas Muller from Bayern Munich.",
"role": "assistant"
},
{
"content": "Why is he on the ground?",
"role": "user"
},
{
"content": "Because he's sliding on his knees to celebrate.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "Please describe this image",
"role": "user"
},
{
"content": "Chinese astronaut Gui Haichao is giving a speech.",
"role": "assistant"
},
{
"content": "What has he accomplished?",
"role": "user"
},
{
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
},
{
"messages": [
{
"content": "他们是谁?",
"role": "user"
},
{
"content": "他们是拜仁慕尼黑的凯恩和格雷茨卡。",
"role": "assistant"
},
{
"content": "他们在做什么?",
"role": "user"
},
{
"content": "他们在足球场上庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/1.jpg"
]
},
{
"messages": [
{
"content": "他是谁?",
"role": "user"
},
{
"content": "他是来自拜仁慕尼黑的托马斯·穆勒。",
"role": "assistant"
},
{
"content": "他为什么在地上?",
"role": "user"
},
{
"content": "因为他正在双膝跪地滑行庆祝。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/2.jpg"
]
},
{
"messages": [
{
"content": "请描述这张图片",
"role": "user"
},
{
"content": "中国宇航员桂海潮正在讲话。",
"role": "assistant"
},
{
"content": "他取得过哪些成就?",
"role": "user"
},
{
"content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家,从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
"role": "assistant"
}
],
"images": [
"mllm_demo_data/3.jpg"
]
}
]
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment