Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
InstructBLIP_pytorch
Commits
c04f261a
Commit
c04f261a
authored
Aug 22, 2024
by
dongchy920
Browse files
InstruceBLIP
parents
Pipeline
#1594
canceled with stages
Changes
421
Pipelines
1
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
938 additions
and
0 deletions
+938
-0
lavis/common/annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py
...r/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py
+46
-0
lavis/common/annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py
...annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py
+44
-0
lavis/common/annotator/uniformer/configs/_base_/models/dnl_r50-d8.py
...n/annotator/uniformer/configs/_base_/models/dnl_r50-d8.py
+46
-0
lavis/common/annotator/uniformer/configs/_base_/models/emanet_r50-d8.py
...nnotator/uniformer/configs/_base_/models/emanet_r50-d8.py
+47
-0
lavis/common/annotator/uniformer/configs/_base_/models/encnet_r50-d8.py
...nnotator/uniformer/configs/_base_/models/encnet_r50-d8.py
+48
-0
lavis/common/annotator/uniformer/configs/_base_/models/fast_scnn.py
...on/annotator/uniformer/configs/_base_/models/fast_scnn.py
+57
-0
lavis/common/annotator/uniformer/configs/_base_/models/fcn_hr18.py
...mon/annotator/uniformer/configs/_base_/models/fcn_hr18.py
+52
-0
lavis/common/annotator/uniformer/configs/_base_/models/fcn_r50-d8.py
...n/annotator/uniformer/configs/_base_/models/fcn_r50-d8.py
+45
-0
lavis/common/annotator/uniformer/configs/_base_/models/fcn_unet_s5-d16.py
...otator/uniformer/configs/_base_/models/fcn_unet_s5-d16.py
+51
-0
lavis/common/annotator/uniformer/configs/_base_/models/fpn_r50.py
...mmon/annotator/uniformer/configs/_base_/models/fpn_r50.py
+36
-0
lavis/common/annotator/uniformer/configs/_base_/models/fpn_uniformer.py
...nnotator/uniformer/configs/_base_/models/fpn_uniformer.py
+35
-0
lavis/common/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py
...annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py
+46
-0
lavis/common/annotator/uniformer/configs/_base_/models/lraspp_m-v3-d8.py
...notator/uniformer/configs/_base_/models/lraspp_m-v3-d8.py
+25
-0
lavis/common/annotator/uniformer/configs/_base_/models/nonlocal_r50-d8.py
...otator/uniformer/configs/_base_/models/nonlocal_r50-d8.py
+46
-0
lavis/common/annotator/uniformer/configs/_base_/models/ocrnet_hr18.py
.../annotator/uniformer/configs/_base_/models/ocrnet_hr18.py
+68
-0
lavis/common/annotator/uniformer/configs/_base_/models/ocrnet_r50-d8.py
...nnotator/uniformer/configs/_base_/models/ocrnet_r50-d8.py
+47
-0
lavis/common/annotator/uniformer/configs/_base_/models/pointrend_r50.py
...nnotator/uniformer/configs/_base_/models/pointrend_r50.py
+56
-0
lavis/common/annotator/uniformer/configs/_base_/models/psanet_r50-d8.py
...nnotator/uniformer/configs/_base_/models/psanet_r50-d8.py
+49
-0
lavis/common/annotator/uniformer/configs/_base_/models/pspnet_r50-d8.py
...nnotator/uniformer/configs/_base_/models/pspnet_r50-d8.py
+44
-0
lavis/common/annotator/uniformer/configs/_base_/models/pspnet_unet_s5-d16.py
...tor/uniformer/configs/_base_/models/pspnet_unet_s5-d16.py
+50
-0
No files found.
Too many changes to show.
To preserve performance only
421 of 421+
files are displayed.
Plain diff
Email patch
lavis/common/annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'DepthwiseSeparableASPPHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
dilations
=
(
1
,
12
,
24
,
36
),
c1_in_channels
=
256
,
c1_channels
=
48
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'DMHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
filter_sizes
=
(
1
,
3
,
5
,
7
),
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
),
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/dnl_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'DNLHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
dropout_ratio
=
0.1
,
reduction
=
2
,
use_scale
=
True
,
mode
=
'embedded_gaussian'
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/emanet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'EMAHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
256
,
ema_channels
=
512
,
num_bases
=
64
,
num_stages
=
3
,
momentum
=
0.1
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/encnet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'EncHead'
,
in_channels
=
[
512
,
1024
,
2048
],
in_index
=
(
1
,
2
,
3
),
channels
=
512
,
num_codes
=
32
,
use_se_loss
=
True
,
add_lateral
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_se_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
0.2
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/fast_scnn.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
,
momentum
=
0.01
)
model
=
dict
(
type
=
'EncoderDecoder'
,
backbone
=
dict
(
type
=
'FastSCNN'
,
downsample_dw_channels
=
(
32
,
48
),
global_in_channels
=
64
,
global_block_channels
=
(
64
,
96
,
128
),
global_block_strides
=
(
2
,
2
,
1
),
global_out_channels
=
128
,
higher_in_channels
=
64
,
lower_in_channels
=
128
,
fusion_out_channels
=
128
,
out_indices
=
(
0
,
1
,
2
),
norm_cfg
=
norm_cfg
,
align_corners
=
False
),
decode_head
=
dict
(
type
=
'DepthwiseSeparableFCNHead'
,
in_channels
=
128
,
channels
=
128
,
concat_input
=
False
,
num_classes
=
19
,
in_index
=-
1
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
0.4
)),
auxiliary_head
=
[
dict
(
type
=
'FCNHead'
,
in_channels
=
128
,
channels
=
32
,
num_convs
=
1
,
num_classes
=
19
,
in_index
=-
2
,
norm_cfg
=
norm_cfg
,
concat_input
=
False
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
0.4
)),
dict
(
type
=
'FCNHead'
,
in_channels
=
64
,
channels
=
32
,
num_convs
=
1
,
num_classes
=
19
,
in_index
=-
3
,
norm_cfg
=
norm_cfg
,
concat_input
=
False
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
0.4
)),
],
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/fcn_hr18.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://msra/hrnetv2_w18'
,
backbone
=
dict
(
type
=
'HRNet'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
extra
=
dict
(
stage1
=
dict
(
num_modules
=
1
,
num_branches
=
1
,
block
=
'BOTTLENECK'
,
num_blocks
=
(
4
,
),
num_channels
=
(
64
,
)),
stage2
=
dict
(
num_modules
=
1
,
num_branches
=
2
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
),
num_channels
=
(
18
,
36
)),
stage3
=
dict
(
num_modules
=
4
,
num_branches
=
3
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
),
num_channels
=
(
18
,
36
,
72
)),
stage4
=
dict
(
num_modules
=
3
,
num_branches
=
4
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
,
4
),
num_channels
=
(
18
,
36
,
72
,
144
)))),
decode_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
[
18
,
36
,
72
,
144
],
in_index
=
(
0
,
1
,
2
,
3
),
channels
=
sum
([
18
,
36
,
72
,
144
]),
input_transform
=
'resize_concat'
,
kernel_size
=
1
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=-
1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/fcn_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
num_convs
=
2
,
concat_input
=
True
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/fcn_unet_s5-d16.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
None
,
backbone
=
dict
(
type
=
'UNet'
,
in_channels
=
3
,
base_channels
=
64
,
num_stages
=
5
,
strides
=
(
1
,
1
,
1
,
1
,
1
),
enc_num_convs
=
(
2
,
2
,
2
,
2
,
2
),
dec_num_convs
=
(
2
,
2
,
2
,
2
),
downsamples
=
(
True
,
True
,
True
,
True
),
enc_dilations
=
(
1
,
1
,
1
,
1
,
1
),
dec_dilations
=
(
1
,
1
,
1
,
1
),
with_cp
=
False
,
conv_cfg
=
None
,
norm_cfg
=
norm_cfg
,
act_cfg
=
dict
(
type
=
'ReLU'
),
upsample_cfg
=
dict
(
type
=
'InterpConv'
),
norm_eval
=
False
),
decode_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
64
,
in_index
=
4
,
channels
=
64
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
2
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
128
,
in_index
=
3
,
channels
=
64
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
2
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'slide'
,
crop_size
=
256
,
stride
=
170
))
lavis/common/annotator/uniformer/configs/_base_/models/fpn_r50.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
1
,
1
),
strides
=
(
1
,
2
,
2
,
2
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
4
),
decode_head
=
dict
(
type
=
'FPNHead'
,
in_channels
=
[
256
,
256
,
256
,
256
],
in_index
=
[
0
,
1
,
2
,
3
],
feature_strides
=
[
4
,
8
,
16
,
32
],
channels
=
128
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/fpn_uniformer.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
backbone
=
dict
(
type
=
'UniFormer'
,
embed_dim
=
[
64
,
128
,
320
,
512
],
layers
=
[
3
,
4
,
8
,
3
],
head_dim
=
64
,
mlp_ratio
=
4.
,
qkv_bias
=
True
,
drop_rate
=
0.
,
attn_drop_rate
=
0.
,
drop_path_rate
=
0.1
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
64
,
128
,
320
,
512
],
out_channels
=
256
,
num_outs
=
4
),
decode_head
=
dict
(
type
=
'FPNHead'
,
in_channels
=
[
256
,
256
,
256
,
256
],
in_index
=
[
0
,
1
,
2
,
3
],
feature_strides
=
[
4
,
8
,
16
,
32
],
channels
=
128
,
dropout_ratio
=
0.1
,
num_classes
=
150
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
)
)
lavis/common/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'GCHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
ratio
=
1
/
4.
,
pooling_type
=
'att'
,
fusion_types
=
(
'channel_add'
,
),
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/lraspp_m-v3-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
eps
=
0.001
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
backbone
=
dict
(
type
=
'MobileNetV3'
,
arch
=
'large'
,
out_indices
=
(
1
,
3
,
16
),
norm_cfg
=
norm_cfg
),
decode_head
=
dict
(
type
=
'LRASPPHead'
,
in_channels
=
(
16
,
24
,
960
),
in_index
=
(
0
,
1
,
2
),
channels
=
128
,
input_transform
=
'multiple_select'
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
act_cfg
=
dict
(
type
=
'ReLU'
),
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/nonlocal_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'NLHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
dropout_ratio
=
0.1
,
reduction
=
2
,
use_scale
=
True
,
mode
=
'embedded_gaussian'
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/ocrnet_hr18.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'CascadeEncoderDecoder'
,
num_stages
=
2
,
pretrained
=
'open-mmlab://msra/hrnetv2_w18'
,
backbone
=
dict
(
type
=
'HRNet'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
extra
=
dict
(
stage1
=
dict
(
num_modules
=
1
,
num_branches
=
1
,
block
=
'BOTTLENECK'
,
num_blocks
=
(
4
,
),
num_channels
=
(
64
,
)),
stage2
=
dict
(
num_modules
=
1
,
num_branches
=
2
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
),
num_channels
=
(
18
,
36
)),
stage3
=
dict
(
num_modules
=
4
,
num_branches
=
3
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
),
num_channels
=
(
18
,
36
,
72
)),
stage4
=
dict
(
num_modules
=
3
,
num_branches
=
4
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
,
4
),
num_channels
=
(
18
,
36
,
72
,
144
)))),
decode_head
=
[
dict
(
type
=
'FCNHead'
,
in_channels
=
[
18
,
36
,
72
,
144
],
channels
=
sum
([
18
,
36
,
72
,
144
]),
in_index
=
(
0
,
1
,
2
,
3
),
input_transform
=
'resize_concat'
,
kernel_size
=
1
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=-
1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
dict
(
type
=
'OCRHead'
,
in_channels
=
[
18
,
36
,
72
,
144
],
in_index
=
(
0
,
1
,
2
,
3
),
input_transform
=
'resize_concat'
,
channels
=
512
,
ocr_channels
=
256
,
dropout_ratio
=-
1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
],
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/ocrnet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'CascadeEncoderDecoder'
,
num_stages
=
2
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
[
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
dict
(
type
=
'OCRHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
ocr_channels
=
256
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
))
],
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/pointrend_r50.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'CascadeEncoderDecoder'
,
num_stages
=
2
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
1
,
1
),
strides
=
(
1
,
2
,
2
,
2
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
4
),
decode_head
=
[
dict
(
type
=
'FPNHead'
,
in_channels
=
[
256
,
256
,
256
,
256
],
in_index
=
[
0
,
1
,
2
,
3
],
feature_strides
=
[
4
,
8
,
16
,
32
],
channels
=
128
,
dropout_ratio
=-
1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
dict
(
type
=
'PointHead'
,
in_channels
=
[
256
],
in_index
=
[
0
],
channels
=
256
,
num_fcs
=
3
,
coarse_pred_each_layer
=
True
,
dropout_ratio
=-
1
,
num_classes
=
19
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
))
],
# model training and testing settings
train_cfg
=
dict
(
num_points
=
2048
,
oversample_ratio
=
3
,
importance_sample_ratio
=
0.75
),
test_cfg
=
dict
(
mode
=
'whole'
,
subdivision_steps
=
2
,
subdivision_num_points
=
8196
,
scale_factor
=
2
))
lavis/common/annotator/uniformer/configs/_base_/models/psanet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'PSAHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
mask_size
=
(
97
,
97
),
psa_type
=
'bi-direction'
,
compact
=
False
,
shrink_factor
=
2
,
normalization_factor
=
1.0
,
psa_softmax
=
True
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/pspnet_r50-d8.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
'open-mmlab://resnet50_v1c'
,
backbone
=
dict
(
type
=
'ResNetV1c'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
dilations
=
(
1
,
1
,
2
,
4
),
strides
=
(
1
,
2
,
1
,
1
),
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
,
contract_dilation
=
True
),
decode_head
=
dict
(
type
=
'PSPHead'
,
in_channels
=
2048
,
in_index
=
3
,
channels
=
512
,
pool_scales
=
(
1
,
2
,
3
,
6
),
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
1024
,
in_index
=
2
,
channels
=
256
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
19
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'whole'
))
lavis/common/annotator/uniformer/configs/_base_/models/pspnet_unet_s5-d16.py
0 → 100644
View file @
c04f261a
# model settings
norm_cfg
=
dict
(
type
=
'SyncBN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'EncoderDecoder'
,
pretrained
=
None
,
backbone
=
dict
(
type
=
'UNet'
,
in_channels
=
3
,
base_channels
=
64
,
num_stages
=
5
,
strides
=
(
1
,
1
,
1
,
1
,
1
),
enc_num_convs
=
(
2
,
2
,
2
,
2
,
2
),
dec_num_convs
=
(
2
,
2
,
2
,
2
),
downsamples
=
(
True
,
True
,
True
,
True
),
enc_dilations
=
(
1
,
1
,
1
,
1
,
1
),
dec_dilations
=
(
1
,
1
,
1
,
1
),
with_cp
=
False
,
conv_cfg
=
None
,
norm_cfg
=
norm_cfg
,
act_cfg
=
dict
(
type
=
'ReLU'
),
upsample_cfg
=
dict
(
type
=
'InterpConv'
),
norm_eval
=
False
),
decode_head
=
dict
(
type
=
'PSPHead'
,
in_channels
=
64
,
in_index
=
4
,
channels
=
16
,
pool_scales
=
(
1
,
2
,
3
,
6
),
dropout_ratio
=
0.1
,
num_classes
=
2
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
)),
auxiliary_head
=
dict
(
type
=
'FCNHead'
,
in_channels
=
128
,
in_index
=
3
,
channels
=
64
,
num_convs
=
1
,
concat_input
=
False
,
dropout_ratio
=
0.1
,
num_classes
=
2
,
norm_cfg
=
norm_cfg
,
align_corners
=
False
,
loss_decode
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
0.4
)),
# model training and testing settings
train_cfg
=
dict
(),
test_cfg
=
dict
(
mode
=
'slide'
,
crop_size
=
256
,
stride
=
170
))
Prev
1
…
4
5
6
7
8
9
10
11
12
…
22
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment