import torch import torch.nn as nn __all__ = ['InceptionV2', 'inception_v2'] # modified according to # https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/bninception.py # batch normalization & 3×3*2 & delete maxpool in 3c and 4e def inception_v2(**kwargs): return InceptionV2(**kwargs) class Inception_2(nn.Module): def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes, pool_type='avg'): super(Inception_2, self).__init__() # 1x1 conv branch self.b1 = nn.Sequential( nn.Conv2d(in_planes, n1x1, kernel_size=1), nn.BatchNorm2d(n1x1, affine=True), nn.ReLU(True), ) # 1x1 conv -> 3x3 conv branch self.b2 = nn.Sequential( nn.Conv2d(in_planes, n3x3red, kernel_size=1), nn.BatchNorm2d(n3x3red, affine=True), nn.ReLU(True), nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1), nn.BatchNorm2d(n3x3, affine=True), nn.ReLU(True), ) # 1x1 conv -> 5x5 conv branch self.b3 = nn.Sequential( nn.Conv2d(in_planes, n5x5red, kernel_size=1), nn.BatchNorm2d(n5x5red, affine=True), nn.ReLU(True), nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5, affine=True), nn.ReLU(True), nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1), nn.BatchNorm2d(n5x5, affine=True), nn.ReLU(True), ) # 3x3 pool if pool_type == 'avg': self.b4 = nn.Sequential(nn.AvgPool2d(3, stride=1, padding=1), ) else: self.b4 = nn.Sequential(nn.MaxPool2d(3, stride=1, padding=1), ) # 1x1 conv branch self.b5 = nn.Sequential( nn.Conv2d(in_planes, pool_planes, kernel_size=1), nn.BatchNorm2d(pool_planes, affine=True), nn.ReLU(True), ) def forward(self, x): y1 = self.b1(x) y2 = self.b2(x) y3 = self.b3(x) y4_pool = self.b4(x) y4 = self.b5(y4_pool) return torch.cat([y1, y2, y3, y4], 1) class Inception_through(nn.Module): def __init__(self, in_planes, n3x3red, n3x3, n3x3red_double, n3x3_double): super(Inception_through, self).__init__() # 1x1 conv -> 3x3 conv branch self.b2 = nn.Sequential( nn.Conv2d(in_planes, n3x3red, kernel_size=1), nn.BatchNorm2d(n3x3red, affine=True), nn.ReLU(True), nn.Conv2d(n3x3red, n3x3, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(n3x3, affine=True), nn.ReLU(True), ) # 1x1 conv -> 5x5 conv branch self.b3 = nn.Sequential( nn.Conv2d(in_planes, n3x3red_double, kernel_size=1), nn.BatchNorm2d(n3x3red_double, affine=True), nn.ReLU(True), nn.Conv2d(n3x3red_double, n3x3_double, kernel_size=3, padding=1), nn.BatchNorm2d(n3x3_double, affine=True), nn.ReLU(True), nn.Conv2d(n3x3_double, n3x3_double, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(n3x3_double, affine=True), nn.ReLU(True), ) # 3x3 pool -> 1x1 conv branch self.b4 = nn.Sequential(nn.MaxPool2d(3, stride=2, padding=1), ) def forward(self, x): y2 = self.b2(x) y3 = self.b3(x) y4 = self.b4(x) return torch.cat([y2, y3, y4], 1) class InceptionV2(nn.Module): def __init__(self, num_classes=1000): super(InceptionV2, self).__init__() self.c1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(True), ) self.c2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, stride=1), nn.ReLU(True), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(True), ) self.a3 = Inception_2(192, 64, 64, 64, 64, 96, 32) self.b3 = Inception_2(256, 64, 64, 96, 64, 96, 64) self.c3 = Inception_through(320, 128, 160, 64, 96) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.lrn = nn.LocalResponseNorm(2) self.a4 = Inception_2(576, 224, 64, 96, 96, 128, 128) self.b4 = Inception_2(576, 192, 96, 128, 96, 128, 128) self.c4 = Inception_2(576, 160, 128, 160, 128, 160, 128) self.d4 = Inception_2(608, 96, 128, 192, 160, 192, 128) self.e4 = Inception_through(608, 128, 192, 192, 256) self.a5 = Inception_2(1056, 352, 192, 320, 160, 224, 128) self.b5 = Inception_2(1024, 352, 192, 320, 192, 224, 128, 'max') self.avgpool = nn.AvgPool2d(7, stride=1) self.linear = nn.Linear(1024, num_classes) def forward(self, x): out = self.c1(x) out = self.maxpool(out) out = self.lrn(out) out = self.c2(out) out = self.lrn(out) out = self.maxpool(out) out = self.a3(out) out = self.b3(out) out = self.c3(out) out = self.a4(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) out = self.e4(out) out = self.a5(out) out = self.b5(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out