import torch import torch.nn as nn __all__ = ['inception_resnet_v1', 'inception_resnet_v2'] class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_planes, eps=0.001, momentum=0.1, affine=True) self.relu = nn.ReLU(inplace=False) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x class Stem_tail_v1(nn.Module): def __init__(self): super(Stem_tail_v1, self).__init__() self.maxpool = nn.MaxPool2d(3, stride=2) self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) self.conv2d_4b = BasicConv2d(192, 256, kernel_size=3, stride=2) def forward(self, x): x = self.maxpool(x) x = self.conv2d_3b(x) x = self.conv2d_4a(x) x = self.conv2d_4b(x) return x class Stem_tail_v2(nn.Module): def __init__(self): super(Stem_tail_v2, self).__init__() self.branch0_0 = nn.MaxPool2d(3, stride=2) self.branch0_1 = BasicConv2d(64, 96, kernel_size=3, stride=2) self.branch1_0 = nn.Sequential( BasicConv2d(160, 64, kernel_size=1, stride=1), BasicConv2d(64, 96, kernel_size=3, stride=1)) self.branch1_1 = nn.Sequential( BasicConv2d(160, 64, kernel_size=1, stride=1), BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)), BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)), BasicConv2d(64, 96, kernel_size=(3, 3), stride=1)) self.branch2_0 = BasicConv2d(192, 128, kernel_size=3, stride=2) self.branch2_1 = nn.MaxPool2d(3, stride=2) def forward(self, x): x0_0 = self.branch0_0(x) x0_1 = self.branch0_1(x) x0 = torch.cat((x0_0, x0_1), 1) x1_0 = self.branch1_0(x0) x1_1 = self.branch1_1(x0) x1 = torch.cat((x1_0, x1_1), 1) x2_0 = self.branch2_0(x1) x2_1 = self.branch2_1(x1) out = torch.cat((x2_0, x2_1), 1) return out class Block35(nn.Module): def __init__(self, scale, input_channels): super(Block35, self).__init__() self.scale = scale self.branch0 = BasicConv2d(input_channels, 32, kernel_size=1, stride=1) self.branch1 = nn.Sequential( BasicConv2d(input_channels, 32, kernel_size=1, stride=1), BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)) if input_channels == 256: conv3_1 = 32 conv3_2 = 32 else: conv3_1 = 48 conv3_2 = 64 self.branch2 = nn.Sequential( BasicConv2d(input_channels, 32, kernel_size=1, stride=1), BasicConv2d(32, conv3_1, kernel_size=3, stride=1, padding=1), BasicConv2d(conv3_1, conv3_2, kernel_size=3, stride=1, padding=1)) self.conv2d = nn.Conv2d(conv3_2 + 64, input_channels, kernel_size=1, stride=1) self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) out = torch.cat((x0, x1, x2), 1) out = self.conv2d(out) out = out * self.scale + x out = self.relu(out) return out class Mixed_6a(nn.Module): def __init__(self, input_channels, k, ll, m, n): super(Mixed_6a, self).__init__() self.branch0 = BasicConv2d(input_channels, n, kernel_size=3, stride=2) self.branch1 = nn.Sequential( BasicConv2d(input_channels, k, kernel_size=1, stride=1), BasicConv2d(k, ll, kernel_size=3, stride=1, padding=1), BasicConv2d(ll, m, kernel_size=3, stride=2)) self.branch2 = nn.MaxPool2d(3, stride=2) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) out = torch.cat((x0, x1, x2), 1) return out class Block17(nn.Module): def __init__(self, scale, input_channels, m): super(Block17, self).__init__() self.scale = scale self.branch0 = BasicConv2d(input_channels, m // 2, kernel_size=1, stride=1) step1 = (m // 2 + 128) // 2 self.branch1 = nn.Sequential( BasicConv2d(input_channels, 128, kernel_size=1, stride=1), BasicConv2d(128, step1, kernel_size=(1, 7), stride=1, padding=(0, 3)), BasicConv2d(step1, m // 2, kernel_size=(7, 1), stride=1, padding=(3, 0))) self.conv2d = nn.Conv2d(m, input_channels, kernel_size=1, stride=1) self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) out = torch.cat((x0, x1), 1) out = self.conv2d(out) out = out * self.scale + x out = self.relu(out) return out class Mixed_7a(nn.Module): def __init__(self, input_channels, output_channels): super(Mixed_7a, self).__init__() self.branch0 = nn.Sequential( BasicConv2d(input_channels, 256, kernel_size=1, stride=1), BasicConv2d(256, 384, kernel_size=3, stride=2)) channels_middle = (output_channels + 256) // 2 self.branch1 = nn.Sequential( BasicConv2d(input_channels, 256, kernel_size=1, stride=1), BasicConv2d(256, channels_middle, kernel_size=3, stride=2)) self.branch2 = nn.Sequential( BasicConv2d(input_channels, 256, kernel_size=1, stride=1), BasicConv2d(256, channels_middle, kernel_size=3, stride=1, padding=1), BasicConv2d(channels_middle, output_channels, kernel_size=3, stride=2)) self.branch3 = nn.MaxPool2d(3, stride=2) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) x3 = self.branch3(x) out = torch.cat((x0, x1, x2, x3), 1) return out class Block8(nn.Module): def __init__(self, scale, input_channels, ll, noReLU=False): super(Block8, self).__init__() self.scale = scale self.noReLU = noReLU self.branch0 = BasicConv2d(input_channels, 192, kernel_size=1, stride=1) step1 = (ll + 192) // 2 self.branch1 = nn.Sequential( BasicConv2d(input_channels, 192, kernel_size=1, stride=1), BasicConv2d(192, step1, kernel_size=(1, 3), stride=1, padding=(0, 1)), BasicConv2d(step1, ll, kernel_size=(3, 1), stride=1, padding=(1, 0))) self.conv2d = nn.Conv2d(192 + ll, input_channels, kernel_size=1, stride=1) if not self.noReLU: self.relu = nn.ReLU(inplace=False) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) out = torch.cat((x0, x1), 1) out = self.conv2d(out) out = out * self.scale + x if not self.noReLU: out = self.relu(out) return out class InceptionResNet(nn.Module): def __init__(self, channel35, k, l_index, m, n, num_classes=1000, num_repeat=[10, 20, 9], scale=[0.17, 0.10, 0.20]): super(InceptionResNet, self).__init__() # Special attributs self.input_space = None self.input_size = (299, 299, 3) self.mean = None self.std = None # Modules self.stem_head = nn.Sequential( BasicConv2d(3, 32, kernel_size=3, stride=2), BasicConv2d(32, 32, kernel_size=3, stride=1), BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1), ) if channel35 == 256: # inception_resnet_v1 self.stem_tail = Stem_tail_v1() else: # inception_resnet_v2 320 self.stem_tail = Stem_tail_v2() sequence_list0 = [] for j in range(num_repeat[0]): sequence_list0.append( Block35(scale=scale[0], input_channels=channel35)) self.repeat0 = nn.Sequential(*sequence_list0) self.mixed_6a = Mixed_6a(input_channels=channel35, k=k, ll=l_index, m=m, n=n) repeat1_input = channel35 + m + n sequence_list1 = [] for j in range(num_repeat[1]): sequence_list1.append( Block17(scale=scale[1], input_channels=repeat1_input, m=m)) self.repeat1 = nn.Sequential(*sequence_list1) self.mixed_7a = Mixed_7a(input_channels=repeat1_input, output_channels=channel35) repeat2_input = repeat1_input + channel35 * 3 // 2 + 512 sequence_list2 = [] for j in range(num_repeat[2]): sequence_list2.append( Block8(scale=scale[2], input_channels=repeat2_input, ll=l_index)) self.repeat2 = nn.Sequential(*sequence_list2) self.block8 = Block8(scale=scale[2], input_channels=repeat2_input, ll=l_index, noReLU=True) self.conv2d_7b = BasicConv2d(repeat2_input, 1536, kernel_size=1, stride=1) self.avgpool_1a = nn.AvgPool2d(8) self.drop = nn.Dropout(p=0.2) self.last_linear = nn.Linear(1536, num_classes) def features(self, input): x = self.stem_head(input) x = self.stem_tail(x) x = self.repeat0(x) x = self.mixed_6a(x) x = self.repeat1(x) x = self.mixed_7a(x) x = self.repeat2(x) x = self.block8(x) x = self.conv2d_7b(x) return x def logits(self, features): x = self.avgpool_1a(features) self.drop(x) x = x.view(x.size(0), -1) x = self.last_linear(x) return x def forward(self, input): x = self.features(input) x = self.logits(x) return x def inception_resnet_v1(**kwargs): model = InceptionResNet(channel35=256, k=192, l_index=192, m=256, n=384, **kwargs) return model def inception_resnet_v2(**kwargs): model = InceptionResNet(channel35=320, k=256, l_index=256, m=384, n=384, **kwargs) return model